Study of calcium profile in neuronal cells with respect to temperature and influx due to potential activity

2021;
: pp. 241–252
https://doi.org/10.23939/mmc2021.02.241
Received: October 22, 2020
Accepted: April 11, 2021

Mathematical Modeling and Computing, Vol. 8, No. 2, pp. 241–252 (2021)

1
Department of Mathematics, Vasantrao Naik Mahavidyalaya, Aurangabad, India
2
Department of First Year Engineering, Pimpri Chinchwad College of Engineering, Pune, India
3
Department of First Year Engineering, Pimpri Chinchwad College of Engineering, Pune, India
4
Navin Jindal School of Management, University of Texas, Dallas, USA

Calcium is a critically important second messenger in the nervous system.  It enters through voltage-gated Ca2+ channels and regulates the release of the synaptic transmitter.  This mechanism is monitored by calcium diffusion, buffering mechanism and calcium influx into the cytoplasm.  The study of Ca2+ dynamics is interesting because the concentration of Ca2+ shows highly complex spatial-temporal behavior.  There are many controls on the cytoplasmic Ca2+ concentration.  First, it is heavily buffered (i.e., bound) by large proteins and second control is that of the variable diffusion coefficient.  The diffusion coefficient is directly proportional to the temperature and inversely proportional to the viscosity.  In this paper, the one-dimensional steady-state case with boundary conditions has been studied to understand the Ca2+ distribution in neuronal cells incorporating diffusion of calcium, point source, excess buffer approximation (EBA), an influx due to the calcium current.  Moreover, the dependency of Ca2+ concentration based on the variable diffusion coefficient is studied.  The finite element method (FEM) has been employed to obtain the solutions.

  1. Augustine G. J., Santamaria F., Tanaka K.  Local calcium signaling in neurons.  Neuron. 40 (2),  331–346 (2003).
  2. Matthews E. A., Dietrich D.  Buffer mobility and the regulation of neuronal calcium domains.  Frontiers in Cellular Neuroscience. 9, 48 (2015).
  3. Bormann G., Brosens F., De Schutter E. Chapter 8: Modeling molecular diffusion.  In: Bower J. M., Bolouri H. (eds.)  Computational Methods in Molecular and Cellular Biology: from Genotype to Phenotype.  MIT Press, Boston Reviews in the Neurosciences (2001).
  4. Carnevale N. T.  Modeling intracellular ion diffusion.  Abstr. Soc. Neurosci. 15, 1143 (1989).
  5. Crank J.  The mathematics of diffusion.  Clarendon Press, Oxford, UK (1975).
  6. Naraghi M., Neher E.  Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of Ca$^{2 +}$ at the mouth of a calcium channel.  Journal of Neuroscience. 17 (18), 6961–6973 (1997).
  7. Nasi E., Tillotson D.  The rate of diffusion of Ca2+ and Ba2+ in a nerve cell body.  Biophysical Journal. 47 (5), 735–738 (1985).
  8. Smith G. D.  Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel.  Biophysical Journal. 71 (6), 3064–3072 (1996).
  9. Fain G. L.  Molecular and cellular physiology of neurons.  Harvard Uni. press (1999).
  10. Sharma L.  A Numerical Model to Study Excess Buffering Approximation near an Open Ca2+ Channel for an Unsteady State Case.  Elixir Appl. Math. 73, 26214–26217 (2014).
  11. McHugh J. M., Kenyon J. L.  An Excel-based model of Ca2+ diffusion and fura 2 measurements in a spherical cell.  American Journal of Physiology-Cell Physiology. 286 (2), C342–C348 (2004).
  12. Neher E.  Concentration profiles of intracellular Ca2+ in presense of diffusible cheltors.  Exp. Brain Res. 14, 80–96 (1986).
  13. Sharma L.  A Numerical Model to Study the Rapid Buffering Approximation near an Open Ca2+ Channel for an Unsteady State Case.  International Journal of Physical and Mathematical Sciences. 8 (2), 445–449 (2014).
  14. Sharma L.  A Numerical Model to Study Effect of Potential-Dependent Influx on Calcium Diffusion in Neuron Cells.  Research & Reviews: Journal of Neuroscience. 4 (1), 1–8 (2014).
  15. Rao S. S.  The Finite Element Method in Engineering.  Elsevier Sci. Technol. (2004).
  16. Shannon T. R., Wang F., Puglisi J., Weber C., Bers D. M.  A mathematical treatment of integrated Ca dynamics within the ventricular myocyte.  Biophysical Journal. 87 (5), P3351–P3371 (2004).
  17. Rao S. S.  The finite element method in engineering.  Butterworth–Heinemann (2017).
  18. Reddy J. N.  An introduction to the finite element method.  New York, McGraw-Hill (2004).
  19. Keener J. P., Sneyd J.  Mathematical physiology. New York, Springer (1998).
  20. Luby-Phelps K.  Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intra cellular surface area.  International Review of Cytology. 192, 189–221 (1999).
  21. Puchkov E. O.  Intracellular viscosity: Methods of measurement and role in metabolism.  Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology. 7 (4), 270–279 (2013).
  22. Viswanath D. S, Natarajan G.  Data book on the viscosity of liquids. New York, Hemisphere Pub. Corp. (1989).
  23. Vogel H.  Das Temperaturabhangigkeitsgesetz der Viskosität von Flüssigkeiten.  Physikalische Zeitschrift. 22, 645–646 (1921).
  24. Tanimoto R., Hiraiwa T., Nakai Y., Shindo Y., Oka K., Hiroi N., Funahashi A.  Detection of Temperature Difference in Neuronal Cells.  Scientific Reports. 6, 22071 (2016).
  25. Van Hook M. J.  Temperature effects on synaptic transmission and neuronal function in the visual thalamus.  PloS one. 15 (4), e0232451 (2020).
  26. Bertram R., Smith G. D., Sherman A.  Modeling Molelling study of the effects of overlapping Ca2+ microdomains on neurotransmitter release.  Biophysical Journal. 76 (2), 735–750 (1999).
  27. Sherman A., Smith G. D., Dai L., Miura R. M.  Asymptotic analysis of buffered calcium diffusion near a point source.  SIAM Journal on Applied Mathematics. 61 (5), 1816–1838 (2001).
  28. Mantina M., Chamberlin A. C., Valero R., Cramer C. J., Truhlar D. G.  Consistent van der Waals radii for the whole main group.  Journal of Physical Chemistry A. 113 (19), 5806–5812 (2009).