Thermal analysis of composites in the termet system

2013;
: pp. 51 – 56
Автори: 
Halushko O., Farmaga I., Shmigelskyi P.

Lviv Polytechnic National University, CAD Department

The paper describes main approaches to thermal analysis of composites in Termet CAE system. Also it describes some principles of FEM implementation in the system.

1. Farmaga I. Regu lar and Adaptive Meshing Algorithms for Modeling of Spherical Inclusions by Finite Element Method / I. Farmaga, M. Lobur, P. Shmigelskyi [et al.] // Proc. of the ХІ-th Intern. Conf. Modern Pr oblems o f Rad io Engineer ing, Te lecommunications and Com puter Science ( TCSET'2012). – Lviv-Slavske, 2012. – P. 5 05–507. 2. Fa rmaga I. F inite Element Meshing of Composites with Spherical Inclusions / I. Fa rmaga, M. Lob ur, P. Shm igelskyi [et al .] // Machine D ynamics R esearch. – Po land, Warsaw University of Technology, 2011. – Vol . 35, No. 3 – P. 13–21. – ISSN: 2 080-9948. 3. Farmaga І. Thermal Ana lysis Methods f or Aut omated D esign o f Com posite Ma terials i n TERMET Soft ware / Iho r Farmaga, O leh Ma tviykiv, Mykh aylo Lobur , [et a l.] // Micromechanics an d Micros ystems Eu rope Workshop 2012 (MME 2012), Ilmenau, Germany, 2012. – Session D – D 07. 4. Farmaga I. Generation of Particle R einforced C omposites Models in T ERMET S oftware / Ih or F armaga, K rzysztof K urzydlowski, Marian Lobur [et al.] // Proceedings of the XX Ukrainian-Polish Conference CAD in Machinery Design - Implementation and Educ ational I ssues. – Lvi v, 20 12. – P. 42–43. 5. Y . Saa d, "Itera tive Me thods For Srapse Linear Systems," Society for Industrial and Applyed Mathematics, pp.92-95, 2003. 6. D. M. Young, "Iterative Methods Fo r S olving Par tial D ifference Equations O f Ell iptic Typ e," H arvard U niversity, pp.66–69, 1950. 7. S. Yang, K. Gobbert, "The Optimal Relaxation Parameter for the SOR Method Applied to a Cl assical Mo del P roblem," D epartment of Mathematics and S tatistics, University o f Maryland, pp.15–18, 1950. 8. Saad, Yousef. “Iterative methods for sparse linear systems”, Philadelphia, Pa.: Society for Industrial and Applied Mathematics. p. 195. 2003