Use of Data Mining in the prediction of risk factors of Type 2 diabetes mellitus in Gulf countries

2021;
: pp. 638–645
https://doi.org/10.23939/mmc2021.04.638
Received: May 23, 2021
Accepted: June 07, 2021
1
University Mohammed First, Faculty of Sciences, Oujda, Morocco
2
University Mohammed First, Highest School of Technologies, Oujda, Morocco
3
Emirates Aviation University, Dubai, United Arab Emirates
4
University Mohammed First, Faculty of Sciences, Oujda, Morocco
5
University Mohammed First, Faculty of Sciences, Oujda, Morocco

Prevalence of diabetes in Gulf countries is knowing a significant increase because of various risk factors, such as: obesity, unhealthy diet, physical inactivity and smoking.  The aim of our proposed study is to use Data Mining and Data Analysis tools in order to determine different risk factors of the development of Type 2 diabetes mellitus (T2DM) in Gulf countries, from Gulf COAST dataset.

  1. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation.  World Health Organization (1999).
  2. Meo S. A., Usmani A. M., Qalbani E.  Prevalence of type 2 diabetes in the Arab world: impact of GDP and energy consumption.  Eur. Rev. Med. Pharmacol. Sci. 21 (6), 1303–1312 (2017).
  3. Boutayeb W., Lamlili M., Boutayeb A., Derouich M.  Mathematical modelling and simulation of $\beta$-cell mass, insulin and glucose dynamics: Effect of genetic predisposition to diabetes.  Journal of Biomedical Science and Engineering. 7 (6), 330–342 (2014).
  4. Elhayany A., Lustman A., Abel R., Attal-Singer J., Vinker S.  A low carbohydrate Mediterranean diet improves cardiovascular risk factors and diabetes control among overweight patients with type~2 diabetes mellitus: a 1-year prospective randomized intervention study.  Diabetes, Obesity and Metabolism. 12 (3), 204–209 (2010).
  5. Pulgaron E. R., Delamater A. M.  Obesity and type~2 diabetes in children: epidemiology and treatment.  Current Diabetes Reports. 14 (8), Article number: 508 (2014).
  6. Donaghue K. C.,  Chiarelli F.,  Trotta D.,  Allgrove J.,  Dahl-Jorgensen Knut.  Microvascular and macrovascular complications.  Pediatric Diabetes. 8, 163–170 (2007).
  7. De Luis D., Fernandez N., Arranz M., Aller R., Izaola O., Romero E.  Total homocysteine levels relation with chronic complications of diabetes, body composition, and other cardiovascular risk factors in a population of patients with diabetes mellitus type~2.  Journal of Diabetes and its Complications. 19 (1), 42–46 (2005).
  8. Lei-Da C., Toru S., Frolick M. N.  Data mining methods, applications, and tools.  Information systems management. 17 (1), 65–70 (2000).
  9. Koh H. C., Tan G., and others.  Data mining applications in healthcare.  Journal of healthcare information management. 19 (2), 64–72 (2011).
  10. Parvez A., Saqib Q., Syed R.,  Afser Q.  Techniques of data mining in healthcare: a review.  International Journal of Computer Applications. 120 (15), 38–50 (2015).
  11. Jothi N., Rashid Nur’Aini Abdul , Husain W.  Data mining in healthcare–a review.  Procedia computer science. 72, 306–313 (2015).
  12. Yoo I.,  Alafaireet P., Marinov M., Pena-Hernandez K., Gopidi R., Chang J.-F., Hua L.  Data mining in healthcare and biomedicine: a survey of the literature.  Journal of medical systems. 36 (4), 2431–2448 (2012).
  13. Tapak L., Mahjub H., Hamidi O., Poorolajal J.  Real-data comparison of data mining methods in prediction of diabetes in Iran.  Healthcare informatics research. 19 (3), 177–185 (2013).
  14. Mukesh K., Rajan V., Anshul A.  Prediction of Diabetes Using Bayesian Network.  International Journal of Computer Science and Information Technologies. 5 (4), 5174–5178 (2014).
  15. Azrar A., Ali Y., Awaisl M., Zaheer K.  Data mining models comparison for diabetes prediction.  Int. J. Adv. Comput. Sci. Appl. 9 (8), 320–323 (2018).
  16. Tramunt B., Smati S., Grandgeorge N., Lenfant F., Arnal J.-F., Montagner A., Gourdy P.  Sex differences in metabolic regulation and diabetes susceptibility.  Diabetologia. 63 (3), 453–461 (2020).
  17. Graham J., Cumsille P. E., Shevock A. E.  Methods for handling missing data.  Handbook of Psychology, Second Edition & Computer Engineering. Vol. 2 (2012).
  18. Aljuaid T., Sasi S.  Proper imputation techniques for missing values in datasets.  IEEE: 2016 International Conference on Data Science and Engineering (ICDSE). 1–5 (2016).
  19. Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R., Botstein D., Altman R. B.  Missing value estimation methods for DNA microarrays.  Bioinformatics. 17 (6), 520–525 (2001).
  20. Abdar M., Kalhori N., Sutikno T., Subroto I. M. I., Arji G.  Comparing Performance of Data Mining Algorithms in Prediction Heart Diseases.  International Journal of Electrical & Computer Engineering. 5 (6), 1569–1576 (2015).
  21. Lavanya D., Rani K. U.  Performance evaluation of decision tree classifiers on medical datasets.  International Journal of Computer Applications. 26 (4), 1–4 (2011).
  22. Emdin C. A., Anderson S. G., Woodward M., Rahimi K.  Usual Blood Pressure and Risk of New-Onset Diabetes: Evidence From 4.1 Million Adults and a Meta-Analysis of Prospective Studies.  Journal of the American College of Cardiology.  66 (14), 1552–1562 (2015).
Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 638–645 (2021)