Investigation of the interrelationship between changes and redistribution of angular momentum of the Earth, the Antarctic tectonic plate, the atmosphere, and the ocean.

https://doi.org/10.23939/jgd2018.01.005
Received: March 05, 2018
Revised: June 11, 2018
Accepted: June 25, 2018
1
Department of Higher Geodesy and Astronomy of Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

Purpose. The purpose of this work is elaboration of the results of long-term GNSS-observations at permanent stations located on the Antarctic tectonic plate; the determination of the change in its rotational parameters and angular momentum, the calculation of the angular momentum of the Earth, the oceanic and atmospheric masses, and the establishment of the interrelationship between these parameters. Methods. The work represents an improved algorithm for determining the parameters of the Euler pole and the angular velocity of the tectonic plate, taking into account the continuity and unevenness of time series of daily solutions of the spatial location of permanent GNSS-stations. Results. According to the results of daily solutions of 28 permanent GNSS-stations in Antarctica for the period (1996–2014), the average position of Euler pole, the angular velocity of the plate, and their annual changes are determined. The annual parameters of the tensor of inertia and angular momentum of the Antarctic tectonic plate are determined. Using the data of the Earth’s rotation service and geophysical observations, the annual changes in the angular momentum of the Earth, the tensors of moment of inertia, and angular momentum of oceanic and atmospheric masses for the period (1996–2014) have been calculated. Scientific novelty. It is established that during the whole observation period the increase of the angular momentum of the Antarctic tectonic plate corresponds to the decrease of the angular momentum of the Earth and the atmosphere. This indicates the conservation of angular momentum. The increases of the angular momentum of Antarctic tectonic plate corresponds to the increases of the angular momentum of the ocean. Explanation of this interrelationship requires additional research.

  1. 1. Vikulin, A.V., Makhmudov, Kh. F., Ivanchin, AG, Gerus, AI, & Dolgaya, A.A. (2016). On the wave and reid properties of the earth's crust. Solid State Physics, 58 (3), 547–557
    https://doi.org/10.1134/S1063783416030306
    2. Pandul, Y. (2017). Geodetic astronomy applied to the solution of engineering and geodesic problems. Litres.
    3. Tretjak K. R., Alj-Alusi F. K. F. About relationship of uneven of the Earth rotational movement and Antarctic tectonic plate. Ukrainian Antarctic Journal, (14), 43–57 (in Ukrainian).
    4. Khain, V.E., & A.I. Poletayev. (2007). Rotation tectonics of the Earth. Science in Russia, (6), 14–21 (in Russian).
    5. Fylatj'ev V. P. (2007). The influence of rotational effects on the tectonics of the planet (on the example of the transition zone from the Asian continent to the Pacific Ocean). Rotational processes in Geology and Physics. Moscow., 341–360 (in Russian).
    6. Altamimi, Z., Métivier, L., & Collilieux, X. (2012). ITRF2008 plate motion model. Journal of Geophysical Research: Solid Earth, 117(B7). doi:10.1029/2011jb008930
    https://doi.org/10.1029/2011JB008930
    7. Argus, D. F., & Gordon, R. G. (1991). No‐net‐rotation model of current plate velocities incorporating plate motion model NUVEL‐1. Geophysical research letters, 18(11), 2039–2042.
    https://doi.org/10.1029/91GL01532
    8. Argus, D. F., Gordon, R. G., & Demets, C. (2011). Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, 12(11). doi:10.1029/2011gc003751
    https://doi.org/10.1029/2011GC003751
    9. Baranov, A., & Morelli, A. (2013, April). The Moho depth and the inner crustal structure of the Antarctica region. In EGU General Assembly Conference Abstracts (Vol. 15).
    10. Bowin, C. (2010). Plate tectonics conserves angular momentum. EEarth, 5(1), 1-20. doi:10.5194/ee-5-12010
    11. Brosche, P., & Sündermann, J. (1985). The Antarctic Circumpolar Current and its influence on the Earth's rotation. Deutsche Hydrografische Zeitschrift, 38(1), 1-6.
    https://doi.org/10.1007/BF02226432
    12. Brosche, P., Wünsch, J., Frische, A., Sündermann, J., & Maier-Reimer, E. (1990). The seasonal variation of the angular momentum of the oceans. Naturwissenschaften, 77(4), 185–186.
    https://doi.org/10.1007/BF01131164
    13. Brosche, P., Wünsch, J., Maier‐Reimer, E., Segschneider, J., & Sündermann, J. (1997). The axial angular momentum of the general circulation of the oceans. Astronomische Nachrichten, 318(3), 193-199.
    https://doi.org/10.1002/asna.2113180310
    14. Bryan, F. O. (1997). The axial angular momentum balance of a global ocean general circulation model. Dynamics of atmospheres and oceans, 25(3), 191–216.
    https://doi.org/10.1016/S0377-0265(96)00477-0
    15. Sottili, G., Palladino, D. M., Cuffaro, M., & Doglioni, C. (2015). Earth's rotation variability triggers explosive eruptions in subduction zones. Earth, Planets and Space, 67(1), 208.
    https://doi.org/10.1186/s40623-015-0375-z
    16. Celaya, M. A., Wahr, J. M., & Bryan, F. O. (1999). Climate‐driven polar motion. Journal of Geophysical Research: Solid Earth, 104(B6), 12813-12829.
    https://doi.org/10.1029/1999JB900016
    17. Chen, J. L., Wilson, C. R., Chao, B. F., Shum, C. K., & Tapley, B. D. (2000). Hydrological and oceanic excitations to polar motion andlength-of-day variation. Geophysical Journal International, 141(1), 149–156.
    https://doi.org/10.1046/j.1365-246X.2000.00069.x
    18. Dickey, J. O., Marcus, S. L., Johns, C. M., Hide, R., & Thompson, S. R. (1993). The oceanic contribution to the Earth's seasonal angular momentum budget. Geophysical research letters, 20(24), 2953-2956.
    https://doi.org/10.1029/93GL03186
    19. Dickman, S. R. (1998). Determination of oceanic dynamic barometer corrections to atmospheric excitation of Earth rotation. Journal of Geophysical Research: Solid Earth, 103(B7), 15127-15143.
    https://doi.org/10.1029/98JB00614
    20. Dietrich, R., & Rülke, A. (2008). A precise reference frame for Antarctica from SCAR GPS campaign data and some geophysical implications. In Geodetic and Geophysical Observations in Antarctica (pp. 1-10). Springer, Berlin, Heidelberg.
    https://doi.org/10.1007/978-3-540-74882-3_1
    21. Dietrich, R., Dach, R., Engelhardt, G., Ihde, J., Korth, W., Kutterer, H. J., ... & Müller, C. (2001). ITRF coordinates and plate velocities from repeated GPS campaigns in Antarctica–an analysis based on different individual solutions. Journal of Geodesy, 74(11-12), 756-766.
    https://doi.org/10.1007/s001900000147
    22. Dietrich, R., Rülke, A., Ihde, J., Lindner, K., Miller, H., Niemeier, W., ... & Seeber, G. (2004). Plate kinematics and deformation status of the Antarctic Peninsula based on GPS. Global and Planetary Change, 42(1-4), 313-321.
    https://doi.org/10.1016/j.gloplacha.2003.12.003
    23. Drewes, H. (2009). The actual plate kinematic and crustal deformation model APKIM2005 as basis for a non-rotating ITRF. In Geodetic Reference Frames (pp. 95-99). Springer, Berlin, Heidelberg.DOI:10.1007/978-3-642-00860-3_15, 2009.
    https://doi.org/10.1007/978-3-642-00860-3_15
    24. Drewes, H., & Angermann, D. (2001). The actual plate kinematic and crustal deformation model 2000 (APKIM 2000) as a geodetic reference system. In IAG 2001 Scientific Assembly, Budapest, Hungary.
    25. Drewes, H. (1998). Combination of VLBI, SLR and GPS determined station velocities for actual plate kinematic and crustal deformation models. In Geodesy on the Move (pp. 377-382). Springer, Berlin, Heidelberg.
    https://doi.org/10.1007/978-3-642-72245-5_59
    26. National Geophysical Data Center. (2006, July 26). ETOPO5 Data and Documentation | ngdc.noaa.gov. Retrieved from https://www.ngdc.noaa.gov/mgg/global/etopo5.HTML
    27. Eubanks, T. M. (1993). Interactions between the atmosphere, oceans and crust: Possible oceanic signals in Earth rotation. Advances in Space Research, 13(11), 291-300.
    https://doi.org/10.1016/0273-1177(93)90231-Y
    28. Frische, A., & Sündermann, J. (1990). The seasonal angular momentum of the thermohaline ocean circulation. In Earth's Rotation From Eons to Days (pp. 108-126). Springer, Berlin, Heidelberg.
    https://doi.org/10.1007/978-3-642-75587-3_14
    29. Furuya, M., & Hamano, Y. (1998). Effect of the Pacific Ocean on the Earth's seasonal wobble inferred from National Center for Environmental Prediction ocean analysis data. Journal of Geophysical Research: Solid Earth, 103(B5), 10131-10140.
    https://doi.org/10.1029/97JB03531
    30. Project Overview. (n.d.). Retrieved from http://ggosatm.hg.tuwien.ac.at/
    31. Sottili, G., Palladino, D. M., Cuffaro, M., & Doglioni, C. (2015). Earth's rotation variability triggers explosive eruptions in subduction zones. Earth, Planets and Space, 67(1), 208. https://doi.org/ 10.1186/s40623-015-0375-z
    https://doi.org/10.1186/s40623-015-0375-z
    32. Seitz, F., & Schmidt, M. (2005). Atmospheric and oceanic contributions to Chandler wobble excitation determined by wavelet filtering. Journal of Geophysical Research: Solid Earth,110(B11). doi:10.1029/2005jb003826
    https://doi.org/10.1029/2005JB003826
    33. Navigation and service. (n.d.). Retrieved from https://www.iers.org/IERS/EN/Home/home_node.html
    34. Johnson, T. J., Wilson, C. R., & Chao, B. F. (1999). Oceanic angular momentum variability estimated from the Parallel Ocean Climate Model, 1988-1998. Journal of Geophysical Research: Solid Earth,104(B11), 25183-25195. doi:10.1029/1999jb900231
    https://doi.org/10.1029/1999JB900231
    35. Khain, V. E. (2010). Constructing a truly global model of Earth's dynamics: basic principles. Russian Geology and Geophysics, 51(6), 587-591.
    https://doi.org/10.1016/j.rgg.2010.05.001
    36. Tretyak, K., Forat, A., & Holubinka, Y. (2017). Investigation of Changes of the Kinematic Parameters of Antarctic Tectonic Plate Using Data Observations of Permanent GNSS Stations. Reports on Geodesy and Geoinformatics, 103(1). doi:10.1515/rgg-2017-0010
    https://doi.org/10.1515/rgg-2017-0010
    37. Kane, M. F. (1972). Rotational Inerfia of Continents: A Proposed Link between Polar Wandering and Plate Tectonics. Science, 175(4028), 1355-1357. doi:10.1126/science.175.4028.1355
    https://doi.org/10.1126/science.175.4028.1355
    38. Nastula, J., & Ponte, R. M. (1999). Further evidence for oceanic excitation of polar motion. Geophysical Journal International, 139(1), 123-130. doi:10.1046/j.1365-246x.1999.00930.x
    https://doi.org/10.1046/j.1365-246X.1999.00930.x
    39. Link to our Data Products Page:. (n.d.). Retrieved from http://geodesy.unr.edu/
    40. Ponte, R. M., & Gutzler, D. S. (1991). The Madden-Julian oscillation and the angular momentum balance in a barotropic ocean model. Journal of Geophysical Research: Oceans, 96(C1), 835-842. doi:10.1029/90jc02277
    https://doi.org/10.1029/90JC02277
    41. Ponte, R. M., & Stammer, D. (2000). Global and regional axial ocean angular momentum signals and length-of-day variations (1985-1996). Journal of Geophysical Research: Oceans, 105(C7), 17161-17171. doi:10.1029/1999jc000157
    https://doi.org/10.1029/1999JC000157
    42. Ponte, R. M., & Stammer, D. (1999). Role of ocean currents and bottom pressure variability on seasonal polar motion. Journal of Geophysical Research: Oceans, 104(C10), 23393-23409. doi:10.1029/1999jc900222
    https://doi.org/10.1029/1999JC900222
    43. Ponte, R. M., & Rosen, R. D. (1994). Oceanic angular momentum and torques in a general circulation model. Journal of physical oceanography, 24(9), 1966-1977.
    https://doi.org/10.1175/1520-0485(1994)024<1966:OAMATI>2.0.CO;2
    44. Ponte, R. M. (1990). Barotropic motions and the exchange of angular momentum between the oceans and solid Earth. Journal of Geophysical Research, 95(C7), 11369. doi:10.1029/jc095ic07p11369
    https://doi.org/10.1029/JC095iC07p11369
    45. Ponte, R. M., Stammer, D., & Marshall, J. (1998). Oceanic signals in observed motions of the Earths pole of rotation. Nature, 391(6666), 476-479. doi:10.1038/35126.
    https://doi.org/10.1038/35126
    46. Ponte, R. M. (1997). Oceanic excitation of daily to seasonal signals in Earth rotation: Results from a constant-density numerical model. Geophysical Journal International, 130(2), 469-474. doi:10.1111/j.1365-246x.1997.tb05662.x
    https://doi.org/10.1111/j.1365-246X.1997.tb05662.x
    47. Schettino, A. (1999). Computational methods for calculating geometric parameters of tectonic plates. Computers & Geosciences, 25(8), 897-907. doi:10.1016/s0098-3004(99)00054-0
    https://doi.org/10.1016/S0098-3004(99)00054-0
    48. Scripps Orbit and Permanent Array Center (SOPAC). (n.d.). Retrieved from http://sopac.ucsd.edu/
    49. Sella, G. F., Dixon, T. H., & Mao, A. (2002). REVEL: A model for Recent plate velocities from space geodesy. Journal of Geophysical Research: Solid Earth, 107(B4). doi:10.1029/2000jb000033
    https://doi.org/10.1029/2000JB000033
    50. Jin, S., & Zhu, W. (2004). A revision of the parameters of the NNR-NUVEL-1A plate velocity model. Journal of Geodynamics, 38(1), 85-92. doi:10.1016/j.jog.2004.03.004
    https://doi.org/10.1016/j.jog.2004.03.004
    51. Tretyak, K. R., & Vovk, A. I. (2016). Differentation of the rotational movements of the european continents earth crust. Acta Geodynamica et Geomaterialia, 13(1), 181.
    52. Vikulin, А. (2015). Geodynamics as wave dynamics of the medium composed of rotating blocks. Geodynamics & Tectono-physics, 6(3), 345-364. doi:10.5800/gt-2015-6-3-0185
    https://doi.org/10.5800/GT-2015-6-3-0185
    53. Jiang, W., E, D., Zhan, B., & Liu, Y. (2009). New Model of Antarctic Plate Motion and Its Analysis. Chinese Journal of Geophysics, 52(1), 23-32. i:10.1002 /cjg2. 1323
    https://doi.org/10.1002/cjg2.1323
    54. Wu, X., Ray, J., & Dam, T. V. (2012). Geocenter motion and its geodetic and geophysical implications. Journal of Geodynamics, 58, 44-61. doi:10.1016/j.jog.2012.01.007
    https://doi.org/10.1016/j.jog.2012.01.007