Mixtures based on polypropylene (PP) and polyamide (PA) are of great importance as structural materials, the mixing of which reduces the negative characteristics of the original polymers. Non-polar PP significantly reduces water absorption of the material during mixing with polar high hydrophilic PA. As a result, the effect of moisture on the mechanical and thermal properties of the composites decreases. On the other hand, mixing PP with PA can extend the temperature range of material exploitation at negative temperatures. However, it is necessary to use the compatibilizers, usually a complex chemical structure, in particular, maleinized PP, to obtain a homogeneous mixture of PP with PA. But in this case the probability of chemical cross-linking of macro molecules increases as a result of the interaction of the anhydrous groups with the peptide.
The authors of the previous investigations proposed a method for obtaining a nanocomposite based on a mixture of PP/PA-6 with increased thermal stability.
The purpose of this study was to make a microscopic analysis of the distribution of a nanocomposite based on PA-6 with MMT, intercalated PVP, in a polypropylene matrix and to investigate the effect of nanocomposite content on the character of distribution.
On the basis of microscopic studies it was established that the distribution of nanocomposite based on PA-6 with MMT, which is intercalated PVP, in the polypropylene matrix is the most homogeneous with the content of modified PA-6 from 15 to 30% by weight. Such composites are characterized by a lamellar structure and a small amount of agglomerates of modified PA-6 with the smallest sizes (from particles of microns to 5 microns), which may indicate a complete stratification of MMT. Agglomerates of larger sizes (from 5 to 20 microns) are dominated in the structure of the composite with a lower content of the modified PA-6, they are distributed unevenly, and their adhesion to the PP is low. An increase in the content of modified PA-6 in the composite above 30% by weight leads to the formation of a heterogeneous structure with a lot of agglomerates of various sizes (from 1 to 15 microns), which negatively affects on the physical and mechanical properties of the material and the thermal stability.
1. Olejnik, M. (2008). Nanokompozyty polimerowe - rola nanododatków. Techniczne Wyroby Włókiennicze, 16(3/4), 25-31.
2. Abdullayev, E., & Lvov, Y. (2013). Halloysite clay nanotubes as a ceramic "skeleton" for functional biopolymer composites with sustained drug release. Journal of Materials Chemistry B, 1(23), 2894. doi:10.1039/c3tb20059k
https://doi.org/10.1039/c3tb20059k
3. Kacperski, M. (2003). Polymer nanocomposites. Part II. Nanocomposites based on thermoplastic polymers and layered silicates. Polimery,48(02), 85-90. doi:10.14314/polimery.2003.085
https://doi.org/10.14314/polimery.2003.085
4. Pawlikowska, D. (2017). Elektrycznie i termicznie przewodzące nanokompozyty polimerowe na bazie polietylenu o małej gęstości z dodatkiem nanopłytek grafenowych. Przemysł Chemiczny, 1(9),
https://doi.org/10.15199/62.2017.9.34
167-172. doi:10.15199/62.2017.9.34
https://doi.org/10.15199/62.2017.9.34
5. Stix, G. (2001). Małe jest wielkie. Świat Nauki, 11, 24.
https://doi.org/10.1038/scientificamerican0701-24
6. Wierzbicka, E., Legocka, I., Wardzinska-Jarmulska1, E., Szczepaniak, B., & Krzyzewski, M. (2016). Functionalized nanofiller for polymers - preparation, properties and application. Polimery, 61(10), 670-676. doi:10.14314/polimery.2016.670
https://doi.org/10.14314/polimery.2016.670
7. Liu, M., Guo, B., Du, M., Cai, X., & Jia, D. (2007). Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology, 18(45), 455703. doi:10.1088/0957-4484/18/45/455703
https://doi.org/10.1088/0957-4484/18/45/455703
8. Vahedi, V., & Pasbakhsh, P. (2014). Instrumented impact properties and fracture behaviour of epoxy/modified halloysite nanocomposites. Polymer Testing, 39, 101-114. doi:10.1016/j. polymertesting.2014.07.017
https://doi.org/10.1016/j.polymertesting.2014.07.017
9. Zaini, M., Majid, R. A., & Nikbakht, H. (2014). Modification of Montmorillonite with Diamine Surfactants. Applied Mechanics and Materials, 695, 224-227. doi:10.4028/www. scientific. net/amm.695.224
https://doi.org/10.4028/www.scientific.net/AMM.695.224
10. Li, C., Liu, J., Qu, X., & Yang, Z. (2009). A general synthesis approach toward halloysite-based composite nanotube. Journal of Applied Polymer Science, 112(5), 2647-2655. doi:10.1002/app.29652
https://doi.org/10.1002/app.29652
11. Ye, Y., Chen, H., Wu, J., & Ye, L. (2007). High impact strength epoxy nanocomposites with natural nanotubes. Polymer, 48(21), 6426-6433. doi:10.1016/j. polymer.2007.08.035
https://doi.org/10.1016/j.polymer.2007.08.035
12. Meng, Ri Liang, Wu, Yu Jiao, He, Hui, Yang, Dao Yi (2010). Research on Mechanical Properties and Crystallization Performance of PP/PA6/OMMT Composite. Plastics Science and
Technology, 3, 65-69.
13. Huang, G., Peng, X. (2008). Research Progress of Preparation and Properties of Organic Montmorillonite Filled Polypropylene/PA6 Nanocomposites. Plastics Science and Technology, 11,
94-97.
14. Krasinskyi, V., Kochubei, V., Klym, Y., & Suberlyak, O. (2017). Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies,4(12 (88)), 44-50. doi:10.15587/1729-4061.2017.108465
https://doi.org/10.15587/1729-4061.2017.108465
15. Krasinskyi, V., Suberlyak, O., Kochubei, V., Klym, Y., Zemke, V., & Jachowicz, T. (2018). Effect Of Small Additives Of Polyamide Modified By Polyvinylpyrrolidone And Montmorillonite On
Polypropylene Technological Properties And Heat Resistance. Advances in Science and Technology Research Journal, 12(2), 83-88. doi:10.12913/22998624/90924
https://doi.org/10.12913/22998624/90924
16. Krasinskyi, V., Suberlyak, O., Dulebová, Ľ, & Antoniuk, V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering
https://doi.org/10.4028/www.scientific.net/KEM.756.3
Materials, 756, 3-10. doi:10.4028/www. scientific. net/kem.756.3
17. Krasinskyi, V., Suberlyak, O., Zemke, V., Klym, Yu., Gaidos, I. (2019). The Role of Polyvinylpyrrolidone in the Formation of Nanocomposites Based on Acompatible Polycaproamide and Polypropylene. Chemistry & Chemical Technology, 13 (1), 59-63.
https://doi.org/10.23939/chcht13.01.059
18. Chen, Y., Geever, L., Higginbotham, C., Killion, J., Lyons, S., Devine, D. (2016). Reinforced polylactic acid for use in high-strength biodegradable medical implants. ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
19. Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014). Recent advance in research on halloysite nanotubespolymer nanocomposite. Progress in Polymer Science, 39(8), 1498-1525. doi:10.1016/j. progpolymsci.2014.04.004
https://doi.org/10.1016/j.progpolymsci.2014.04.004
20. Deng, S., Zhang, J., & Ye, L. (2009). Halloysite-epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments. Composites Science and
https://doi.org/10.1016/j.compscitech.2009.07.001
Technology, 69(14), 2497-2505.