Molecular Modelling of Acridine Oxidation by Peroxyacids

2019;
: pp. 334 - 340
1
Ivan Franko National University of Lviv
2
Ivan Franko National University of Lviv
3
Ivan Franko National University of Lviv
4
Ivan Franko National University of Lviv
5
Ivan Franko National University of Lviv
6
Ivan Franko National University of Lviv

The optimal geometric structure and reactivity of some peroxyacids, acridine and products of their interaction were calculated by quantum-chemical methods. It was found that the heat of formation of peroxyacids (PA) and carboxylic acids (CA) grow with increasing length of a hydrocarbon radical. The dependencies of the area of PA and molecules of CA on the number of carbon atoms in the molecules are linear. The potentials of ionization of all studied PA are close and lie within the range of 11.22–11.39 eV depending on the calculation methods. The theoretically calculated dipole moments of acids, acridine, peroxyacids, and N-oxide of acridine are in good accordance with experimental values, which indicate the correctness of our calculations. Theoretical calculated values of the heats of formation (ΔНf0) of peroxyacids and acridine are in good accordance with the values obtained by thermo-chemical methods. Calculations indicate that the size of the hydrocarbon radical practically does not affect the value of ΔН0eхр. The results of quantum chemical calculations for the oxidation reaction of acridine may be useful for prediction of other mechanisms of oxidative processes.

[1] Prylezhaeva E. (Ed.): Reaktsiya Prilezhaeva. Electrophil’noe Okislenie. Nauka, Moskva 1974.

[2] Tolstikov G. (Ed): Reaktsii Hydroperoksidnogo Okisleniya. Nauka, Moskva 1976.

[3] Antonovsky V., Khursan S. (Eds.): Phisicheskaya Khimiya Organicheskich Peroksidov. ICC "Akademkniga", Moskva 2003.

[4] Soloviev M., Soloviev M. (Eds.): Computernaya Khimiya. , Solon. Press, Moskva 2005.

[5] Clark T. (Ed.): A Handbook of Computational Chemistry. Wiley-Interscience, New York 1985.

[6] Blinova N., Stejkal J., Trchova M. et al.: Polymer, 2009, 50, 50. https://doi.org/10.1016/j.polymer.2008.10.040

[7] Stejskal J., Gilbert R.: Pure Appl. Chem., 2002, 74, 857. https://doi.org/10.1351/pac200274050857

[8] Dutka V., Matsyuk N., Dutka Yu.: Russ. J. Phys. Chem. A, 2011, 85, 45. https://doi.org/ 10.1134/S0036024411010079

[9] Haynes A. (Ed.): Methods of Oxidation of Organic Compounds. Academic Press Inc., London 1985.

[10] Thomsen A.: Water Res., 1998, 32, 136. https://doi.org/10.1016/S0043-1354(97)00200-5

[11] Parr R., Yang W.: Density-functional theory of atoms and molecules. Oxford University Press, New York 1989.

[12] Jasinski R., Baranski A.: J. Mol. Struc.-THEOCHEM, 2010, 949, 8. https://doi.org/10.1016/j.theochem.2010.02.023

[13] Stewart J. (Ed.): Program Package МОРАС2016. http://www.openmopac.net

[14] Senda N. (Ed.): Program Package Winmostar. http://winmostar.com

[15] Dutka V., Derkach Y Savitska O. and Kovalsky Y.: Visnuk Lviv Nats. Univ., 2007, 48, 166.

[16] Kitaigorodskii A., Zorkii P., Belskii V.: Stroenie Organicheskogo Veshchestva. Dannye Strukturnych Issledovanii 1929–1970. Nauka, Moskva 1980.

[17] Antonovsky V. (Ed.): Organicheskie Peroksidnye Initsiatory. Khimiya, Moskva 1972.

[18] Dutka V., Shchedry V., Gritselyak T., Kovalskyi Ya.: Visnuk Lviv Nats. Univ., 2013, 54, 358.

[19] Shriner R., Fuson R., Curtin D. et al.: The Systematic Identification of Organic Compounds. A Laboratory Manual. John Wiley & Sons, NY-Toronto 1980.

[20] Zhukovskii V.: Russ. J. Phys. Chem., 1983, 57, 2353.

[21] Osipov O., Minkin V. (Eds.): Spravochnik po Dipolnym Momentam. Vyschaja schkola, Moskva 1965.

[22] Lebedeva N.: Russ. J. Phys. Chem., 1964, 38, 1435.

[23] Van-Chin-San Yu. et al. (Eds.): Thermodynamichni Vlactivosti Kysenvmisnykh Organichnykh Spoluk. Dovidnyk. NULP, Lviv 2012.