Proton conductive organic-inorganic membranes were synthesized based on acrylic monomers and silica inorganic component, derived as a result of sol-gel transformation of precursor – 3-methacryloxypropyltrimethoxysilane (MAPTMS). Kinetics of polymerization in situ was investigated by laser interferometry. Membranes characterization includes water and methanol uptake, contact angle and proton conductivity at different temperatures. Activation energy values for proton conductivity in prepared membranes were evaluated. The obtained hybrid membranes demonstrated high proton conductivity making them attractive for the use in fuel cells.
- Liu Y.-L.: Polym. Chem., 2012, 3, 1373. https://doi.org/10.1039/c2py20106b
- Devanathan R.: Energy Environ. Sci., 2008, 1, 101. https://doi.org/10.1039/b808149m
- Xu T., Wu D., Wu L.: Prog. Polym. Sci., 2008, 33, 894. https://doi.org/10.1016/j.progpolymsci.2008.07.002
- Ahmad H., Kamarudin S., Hasran U. et al.: Int. J. Hydrogen Energy, 2010, 35, 2160. https://doi.org/10.1016/j.ijhydene.2009.12.054
- Elabd Y., Hickner M.: Macromolecules, 2011, 44, 1. https://doi.org/10.1021/ma101247c
- Tarasevych M., Kuzov A.: Int. Sci. J. for Alternative Energy and Ecology, 2010, 7, 86.
- Aricò A., Srinivasan S., Antonucci V.: Fuel Cells, 2001, 1, 133. https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
- Silva V., Mendes A., Madeira L. et al.: Advances in Fuel Cells, 2005, 24 p.
- Dupuis A.: Prog. Mater. Sci., 2011, 56, 289. https://doi.org/10.1016/j.pmatsci.2010.11.001
- Park C., Lee C., Guiver M. et al.: Prog. Polym. Sci., 2011, 36, 1443. https://doi.org/10.1016/j.progpolymsci.2011.06.001
- Liang Z., Zhao T., Prabhuram J.: J. Membr. Sci., 2006, 283, 219. https://doi.org/10.1016/j.memsci.2006.06.031
- Pu C., Huang W., Ley K. et al.: J. Electrochem. Soc., 1995, 142, L119. https://doi.org/10.1149/1.2044333
- Peled E., Duvdevani T., Aharon A. et al.: Solid State Lett., 2000, 3, 525. https://doi.org/10.1149/1.1391198
- Kim D., Jo M., Nam S.: J. Ind. Eng. Chem., 2015, 21, 36. https://doi.org/10.1016/j.jiec.2014.04.030
- Ogoshi T., Chujo Y.: Composite Interfaces, 2005, 11, 539. https://doi.org/10.1163/1568554053148735
- Kim D., Lee B., Nam S.: Thin Solid Films, 2013, 546, 431. https://doi.org/10.1016/j.tsf.2013.05.121
- Takahashi K., Umeda J., Hayashi K. et al.: J. Mater. Sci., 2015, 51, 3398. https://doi.org/10.1007/s10853-015-9654-0
- Takemoto M., Hayashi K., Sakamoto W.: Polymer, 120, 264. https://doi.org/10.1016/j.polymer.2017.05.065
- Demydova Kh., Horechyy A., Yevchuk I. et al.: Chem. Chem. Technol., 2018, 12, 58. https://doi.org/10.23939/chcht12.01.058
- Samaryk V., Voronov A., Tarnavchyk I. et al.: Prog. Org. Coat., 2012, 74, 687. https://doi.org/10.1016/j.porgcoat.2011.07.015
- Kapoor P., Mhaske S., Joshi K.: Prog. Org. Coat., 2016, 94, 124. https://doi.org/10.1016/j.porgcoat.2015.11.021
- Costa R., Lameiras F., Nunes E. et al.: Ceram. Int., 2016, 42, 3465. https://doi.org/10.1016/j.ceramint.2015.10.145
- Aparicio M., Duran A.: J. Sol Gel Sci. Technol. 2004, 31, 103. https://doi.org/10.1023/B:JSST.0000047969.56298.d7
- Kreuer K.: Chem. Mater., 1996, 8, 610. https://doi.org/10.1021/cm950192a
- Ying L., Jiang-Hong G., Yu-Sheng X.: Acta Phys.-Chim. Sin., 2001, 17, 792. https://doi.org/10.3866/PKU.WHXB20010906
- Park Y.-I., Moon J., Kim H.: Electrochem. Solid State Lett., 2005, 8, A191. https://doi.org/10.1149/1.1862472
- Kim H., Prakash S., Mustain W. et al.: J. Power Sour., 2009, 193, 562. https://doi.org/10.1016/j.jpowsour.2009.04.040