На основі акрилових мономерів та кремнеземної неорганічної складової, сформованої у результаті золь-гель перетворення прекурсора - 3-метакрилоксипропіл-триметоксисилану (МАПТМС), синтезовано протонопровідні органо-неорганічні нанокомпозитні мембрани. Методом лазерної інтерферометрії досліджено кінетику полімеризації in situ. Встановлено водопоглинання мембран і набрякання їх у метанолі, виміряно контактні кути змочування, що дало змогу розрахувати вільну поверхневу енергію мембран та її складові. Досліджено протонну провідність мембран за різних температур, оцінено енергію активації протонної провідності. Одержані гібридні мембрани демонструють високу протонну провідність, що дає можливість використовувати їх у паливних комірках
- Liu Y.-L.: Polym. Chem., 2012, 3, 1373. https://doi.org/10.1039/c2py20106b
- Devanathan R.: Energy Environ. Sci., 2008, 1, 101. https://doi.org/10.1039/b808149m
- Xu T., Wu D., Wu L.: Prog. Polym. Sci., 2008, 33, 894. https://doi.org/10.1016/j.progpolymsci.2008.07.002
- Ahmad H., Kamarudin S., Hasran U. et al.: Int. J. Hydrogen Energy, 2010, 35, 2160. https://doi.org/10.1016/j.ijhydene.2009.12.054
- Elabd Y., Hickner M.: Macromolecules, 2011, 44, 1. https://doi.org/10.1021/ma101247c
- Tarasevych M., Kuzov A.: Int. Sci. J. for Alternative Energy and Ecology, 2010, 7, 86.
- Aricò A., Srinivasan S., Antonucci V.: Fuel Cells, 2001, 1, 133. https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
- Silva V., Mendes A., Madeira L. et al.: Advances in Fuel Cells, 2005, 24 p.
- Dupuis A.: Prog. Mater. Sci., 2011, 56, 289. https://doi.org/10.1016/j.pmatsci.2010.11.001
- Park C., Lee C., Guiver M. et al.: Prog. Polym. Sci., 2011, 36, 1443. https://doi.org/10.1016/j.progpolymsci.2011.06.001
- Liang Z., Zhao T., Prabhuram J.: J. Membr. Sci., 2006, 283, 219. https://doi.org/10.1016/j.memsci.2006.06.031
- Pu C., Huang W., Ley K. et al.: J. Electrochem. Soc., 1995, 142, L119. https://doi.org/10.1149/1.2044333
- Peled E., Duvdevani T., Aharon A. et al.: Solid State Lett., 2000, 3, 525. https://doi.org/10.1149/1.1391198
- Kim D., Jo M., Nam S.: J. Ind. Eng. Chem., 2015, 21, 36. https://doi.org/10.1016/j.jiec.2014.04.030
- Ogoshi T., Chujo Y.: Composite Interfaces, 2005, 11, 539. https://doi.org/10.1163/1568554053148735
- Kim D., Lee B., Nam S.: Thin Solid Films, 2013, 546, 431. https://doi.org/10.1016/j.tsf.2013.05.121
- Takahashi K., Umeda J., Hayashi K. et al.: J. Mater. Sci., 2015, 51, 3398. https://doi.org/10.1007/s10853-015-9654-0
- Takemoto M., Hayashi K., Sakamoto W.: Polymer, 120, 264. https://doi.org/10.1016/j.polymer.2017.05.065
- Demydova Kh., Horechyy A., Yevchuk I. et al.: Chem. Chem. Technol., 2018, 12, 58. https://doi.org/10.23939/chcht12.01.058
- Samaryk V., Voronov A., Tarnavchyk I. et al.: Prog. Org. Coat., 2012, 74, 687. https://doi.org/10.1016/j.porgcoat.2011.07.015
- Kapoor P., Mhaske S., Joshi K.: Prog. Org. Coat., 2016, 94, 124. https://doi.org/10.1016/j.porgcoat.2015.11.021
- Costa R., Lameiras F., Nunes E. et al.: Ceram. Int., 2016, 42, 3465. https://doi.org/10.1016/j.ceramint.2015.10.145
- Aparicio M., Duran A.: J. Sol Gel Sci. Technol. 2004, 31, 103. https://doi.org/10.1023/B:JSST.0000047969.56298.d7
- Kreuer K.: Chem. Mater., 1996, 8, 610. https://doi.org/10.1021/cm950192a
- Ying L., Jiang-Hong G., Yu-Sheng X.: Acta Phys.-Chim. Sin., 2001, 17, 792. https://doi.org/10.3866/PKU.WHXB20010906
- Park Y.-I., Moon J., Kim H.: Electrochem. Solid State Lett., 2005, 8, A191. https://doi.org/10.1149/1.1862472
- Kim H., Prakash S., Mustain W. et al.: J. Power Sour., 2009, 193, 562. https://doi.org/10.1016/j.jpowsour.2009.04.040