Adsorption Removal of Eriochrome Black T (EBT) and Rose Bengal (RB) from Aqueous Solutions Using Bio-Sorbents Combination

2021;
: pp. 299 - 311
1
Environmental Process Engineering Laboratory (LIPE), Department of Environmental Engineering, University Salah Boubnider, Constantine, Algeria
2
Environmental Process Engineering Laboratory (LIPE), Department of Environmental Engineering, University Salah Boubnider, Constantine, Algeria
3
Environmental Process Engineering Laboratory (LIPE), Department of Environmental Engineering, University Salah Boubnider, Constantine, Algeria
4
Environmental Process Engineering Laboratory (LIPE), Department of Environmental Engineering, University Salah Boubnider, Constantine, Algeria

Adsorption of eriochrome black T (EBT) and rose bengal (RB) mixture from aqueous solutions was investigated using a mixture of low-cost biosorbents – 50 % of raw state potato peels and 50 % of raw state eggshell (M 50%). The surface charge distribution was determined by acid-base titration and the point of zero charge of the M 50% was found to be 8.5. The adsorbent materials were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. It was confirmed that M 50% was mainly composed of calcite and cellulose. The effect of various operating parameters such as contact time, pH, temperature, etc., was studied. The amount of the adsorption decreased when solution pH increased. The pseudo-second order kinetic model provided the best fit to the experimental data for the adsorption of EBT and RB. The obtained thermodynamic parameters indicate that the adsorption process is endothermic one. According to the obtained results, the new biosorbent may be recommended as an industrial adsorbent for the treatment of effluents containing EBT and RB.

  1. Gezer B.: Int. J. Agric. For. Life Sci., 2018, 2, 1. https://doi.org/10.31031/RISM.2018.02.000546
  2. Benkartoussa Z., Karima B., Mossaab B.: JDOC, 2015, 1, 10. http://jdoc.sawis.org
  3. Djebbar M., Djafri F.: Chem. Chem. Technol., 2018, 12, 272. https://doi.org/10.23939/chcht12.02.272
  4. Erguler G.: Miner. Eng., 2015,76, 10. https://doi. org/10.1016/j.mineng.2015.02.002
  5. Khademolhosseini M. Mobasherpour I., Ghahremani D.: Chem. Chem. Technol., 2018, 12, 372. https://doi.org/10.23939/chcht12.03.372
  6. Sabadash V., Mylanyk O., Matsuska O., Gumnitsky J.: Chem. Chem. Technol., 2017, 11, 459. https://doi.org/10.23939/chcht11.04.459
  7. Benkartoussa M., Lehocine B.: Algerian J. Eng. Res., 2018, 2, 45.
  8. Shachneva E., Archibasova D.: Chem. Chem. Technol., 2018, 12, 182. https://doi.org/10.23939/chcht12.02.182
  9. Al Azabi K., Al Marog S., Abukrain A., Sulyman M.: Chem. Res. J., 2018, 3, 45.
  10. Ekpete O., Horsfall M.: Res. J. Chem. Sci., 2011, 3, 10.
  11. Gupta N., Kushwaha A., Chattopadhyaya M.: Arabian J. Chem., 2016, 9, 707. https://doi.org/10.1016/j.arabjc.2011.07.021
  12. Gravereau P.: La diffraction des rayons x par les poudres, ICMCB-CNRS, Université Bordeaux 1, 2012.
  13. Samarghandy M., Hoseinzade E. et al.: BioRes., 2011, 6, 4840.
  14. Weber W.: Physicochemical Processes: for Water Quality Control. Wiley, New York 1972.
  15. Abbas A., Jaafar M., Ismail A.., Wan Sulaiman W.: Chem. Eng. Transact., 2017, 56, 151. https://doi.org/10.3303/CET1756026
  16. Crini G.: Dyes Pigm., 2008, 77, 415. https://doi.org/10.1016/j.dyepig.2007.07.001
  17. Nethaji S., Sivasamy A., Mandal A.: Int. J. Environ. Sci. Technol., 2013, 10, 231. https://doi.org/10.1007/s13762-012-0112-0
  18. Bellir K., Sadok Bouziane I., Boutamine Z. et al.: Energy Procedia, 2012, 18, 924. https://doi.org/10.1016/j.egypro.2012.05.107
  19. Flores-Cano J., Leyva-Ramos R., Mendoza-Barron J. et al.: Appl. Surf. Sci., 2013, 276, 682. https://doi.org/10.1016/j.apsusc.2013.03.153
  20. http://r.chouchi.free.fr/modeles%20moleculaires/frequences.html
  21. Lotfi M.: Cours de Spectroscopie IR, Maitres de conférences classe A, Directeur du laboratoire de recherche LGVRNAQ ,
  22. Taleb H., Chehade Y., Abou Zour M.: Int. J. Electrochem. Sci., 2011, 6, 6542.
  23. Bousba S., Bougdah N., Messikh N., Magri P.: Phys. Chem. Res., 2018, 6, 613. https://doi.org/10.22036/pcr.2018.129154.1482
  24. Raclot C.: Dosage des ions Nickel (II) par l'ETDA, concours aggregation interne ,ancient professeur du lycée des haberges 20014 Vesoul France 2011.
  25. Larakeb M., Youcef L., Achour S.: J. New Technol. Mater., 2016, 6, 19. https://doi.org/10.12816/0043919
  26. Larous S., Meniai A.: Energy Procedia, 2012, 18, 915. https://doi.org/10.1016/j.egypro.2012.05.106
  27. Nandhakumar V., Rajathi A., Venkatachalam R. et al.: SOJ Mater. Sci. Eng., 2015, 1. https://doi.org/10.15226/sojmse.2016.00121
  28. Alberghina G., Bianchini R., Fichera M., Fisichella S.: Dyes Pigm., 2000, 46, 129. https://doi.org/10.1016/S0143-7208(00)00045-0
  29. Hameed B., Tan I., Ahmad A.: Chem. Eng. J., 2008, 144, 235. https://doi.org/10.1016/j.cej.2008.01.028
  30. Hall K., Eagleton L., Acrivos A., Vermeulen T.: Ind. Eng. Chem. Fundamen., 1966, 5, 212. https://doi.org/10.1021/i160018a011
  31. Al-Muhtaseb A., Ibrahim K., Albadarin A. et al.: Chem. Eng. J., 2011, 168, 691. https://doi.org/10.1016/j.cej.2011.01.057
  32. Wu F., Tseng R., Juang R.: Environ. Technol., 2001, 22, 721. https://doi.org/10.1080/09593332208618235
  33. Belaid K., Kacha S.: J. Water Sci., 2011, 24,131. https://doi.org/10.7202/1006107ar