Robust multi-objective optimization for solving the RFID network planning problem

2021;
: pp. 616–626
https://doi.org/10.23939/mmc2021.04.616
Received: May 23, 2021
Accepted: June 07, 2021

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 616–626 (2021)

1
LMSA Lab, FSR, Mohammed V University in Rabat
2
LMSA Lab, FSR, Mohammed V University in Rabat
3
LMSA Lab, FSR, Mohammed V University in Rabat

Radio-frequency identification (RFID) is a new technology used for identifying and tracking objects or people by radio-frequency waves to facilitate automated traceability and data collection.  The RFID system consists of an electronic tag attached to an object, readers, and a middleware.  In the latest real applications based on the RFID technology, the deployment of readers has become a central issue for RFID network planning by means of optimizing several objectives such as the coverage of tags, the number of readers, and the readers/tags interferences.  In practice, the system is affected by uncertainty and uncontrollable environmental parameters.  Therefore, the optimal solutions to the RFID network planning problem can be significantly reduced with uncontrollable variations in some parameters, such as the reader's transmitted power.  In this work, we propose a robust multi-objective optimization approach to solve the deployment of RFID readers.  In this way, we achieve robust optimal solutions that are insensitive to uncertainties in the optimization parameters.

  1. Raghib A., Abou El Majd B.  Hierarchical multiobjective approach for optimising RFID reader deployment.  International Journal of Mathematical Modelling and Numerical Optimisation. 9 (1), 70–88 (2019).
  2. Guan Q., Liu Y., Yang Y. P., Yu W. S.  Genetic Approach for Network Planning in the RFID Systems.  Sixth International Conference on Intelligent Systems Design and Applications. 2, 567–572 (2006).
  3. Chen H. N., Zhu Y. L.  RFID Networks Planning Using Evolutionary Algorithms and Swarm Intelligence.  2008 4th International Conference on Wireless Communications, Networking and Mobile Computing. 1–4 (2008).
  4. Chen H., Zhu Y., Hu K.  Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning.  Applied Soft Computing. 10 (2), 539–547 (2010).
  5. Chen H., Zhu Y., Hu K.  RFID networks planning using a multi-swarm optimizer.  2009 Chinese Control and Decision Conference. 3548–3552 (2009).
  6. Chen H., Zhu Y., Hu K., Ku T.  Dynamic RFID Network Optimization Using a Self-adaptive Bacterial Foraging Algorithm.  International Journal of Artificial Intelligence. 7 (11), 219–231 (2011).
  7. Chen H., Zhu Y., Ma L., Niu B.  Multiobjective RFID Network Optimization Using Multiobjective Evolutionary and Swarm Intelligence Approaches.  Mathematical Problems in Engineering. 2014, Article ID: 961412 (2014).
  8. Ma L., Chen H., Hu K., Zhu Y.  Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization.  The Scientific World Journal. 2014,  Article ID: 941532 (2014).
  9. Oscar B., Chaouch H.  RFID network topology design based on Genetic Algorithms.  2011 IEEE International Conference on RFID-Technologies and Applications. 300–305 (2011).
  10. Gong Y.-J., Shen M., Zhang J., Kaynak O., Chen W.-N., Zhan Z.-H.  Optimizing RFID Network Planning by Using a Particle Swarm Optimization Algorithm With Redundant Reader Elimination.  IEEE Transactions on Industrial Informatics. 8 (4), 900–912 (2012).
  11. Tuba M., Bacanin N., Alihodzic A.  Firefly algorithm for multi-objective RFID network planning problem.  2014 22nd Telecommunications Forum Telfor (TELFOR). 95–98 (2014).
  12. Bacanin N., Tuba M., Jovanovic R.  Hierarchical Multiobjective RFID Network Planning Using Firefly Algorithm.  2015 International Conference on Information and Communication Technology Research (ICTRC). 282–285 (2015).
  13. Tuba M., Bacanin N., Beko M.  Fireworks algorithm for RFID network planning problem.  2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA). 440–444 (2015).
  14. Tuba M., Bacanin N., Beko M.  Multiobjective RFID Network Planning by Artificial Bee Colony Algorithm with Genetic Operators.  International Conference in Swarm Intelligence. 247–254 (2015).
  15. Raghib A., El Majd B. A., Ouchetto O., Aghezzaf B.  Robustness optimization for solving the deployment of RFID readers problem.  2016 5th International Conference on Multimedia Computing and Systems (ICMCS). 509–513 (2016).
  16. Zhao C., Wu C., Chai J., Wang X., Yang X., Lee J. M., Kim M.  Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty.  Applied Soft Computing. 55, 549–564 (2017).
  17. Vector T., Alihodzic A., Tuba M.  Multi-objective RFID network planning with probabilistic coverage model by guided fireworks algorithm.  2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE). 882–887 (2017).
  18. Bouhouche T., Raghib A., El Majd B. A., Bouya M., Boulmalf M.  A middleware architecture for rfid-enabled traceability of air baggage.  MATEC Web of Conferences. 105, Article Number: 00008 (2017).
  19. Kalyanmoy D.  Multi-Objective Optimization Using Evolutionary Algorithms. New York, John Wiley & Sons (2001).
  20. Beyer H. G., Sendhoff B.  Robust optimization-A comprehensive survey.  Computer Methods in Applied Mechanics and Engineering. 196 (33–34), 3190–3218 (2007).
  21. Taguchi G.  Introduction to quality engineering: designing quality into products and processes. The Organization Tokyo  (1986).
  22. Gunawan S., Azarm S.  Multi-objective robust optimization using a sensitivity region concept.  Structural and Multidisciplinary Optimization. 29 (1), 50–60 (2014).
  23. Kuroiwa D., Lee G. M.  On robust multiobjective optimization.  Vietnam Journal of Mathematics. 40 (2&3), 305–317 (2012).
  24. Ehrgott M., Ide J., Schöbel A.  Minmax robustness for multi-objective optimization problems.  European Journal of Operational Research. 239 (1), 17–31 (2014).
  25. Yu H., Liu H.  Robust multiple objective game theory.  Journal of Optimization Theory and Applications. 159 (1), 272–280 (2013).
  26. Deb K., Pratap A., Agarwal S., Meyarivan T.  A fast and elitist multi-objective genetic algorithm: NSGA-II.  IEEE Transactions on Evolutionary Computation. 6 (2), 182–197 (2002).