STUDY OF THE CUTTING FORCE BASED ON THE OBTAINED UNDEFORMED CHIPS DURING CUT IN WHEN MACHINING AN INTERNAL GEAR BY POWER SKIVING METHOD

https://doi.org/10.23939/ujmems2024.02.046
Received: April 25, 2024
Revised: May 02, 2024
Accepted: May 07, 2024
Authors:
1
Lviv Polytechnic National University

This article explores the formation of non-deformed chips during the cut-in of an internal toothed ring using the Power Skiving method. This pivotal stage of the cutting process poses significant hazards not only in gear cutting but also in any cutting operation. The study involved modeling the process at the initial stage for various technological parameters, including cut-in depth and number of working passes. To achieve non-deformed chips, a methodology developed for worm milling was applied. The developed simulation can calculate the corresponding geometry of the cut on each rotation of the cutting tool into the workpiece. Through the utilization of a CAD/CAM environment, solid models involved in the process accurately replicate the cutting process. Based on the obtained regularities, it is possible to select optimal technological parameters and establish safe cutting modes for different gears for the respective equipment and its power parameters

[1] H.J. Stadtfeld "Power Skiving of Cylindrical Gears on Different Machine Platforms", Gear Technology, vol. 1, pp. 52-62, 2014.  
[2] C.Y.Tsai, P.D. Lin "Gear manufacturing using power-skiving method on six-axis CNC turn-mill machining center', Int J. Adv. Manuf. Technol. vol. 95 pp. 609-623, 2018.
https://doi.org/10.1007/s00170-017-1154-8
[3] E. Nagata, T. Tachikawa, Y. Nakahara, N. Kurita, M. Nakamura, D. Iba, I. Moriwaki "Gear skiving for mass production". In the Proceedings of the JSME international conference on motion and power transmissions, The Japan Society of Mechanical Engineers, pp. 02-13, 2017.
https://doi.org/10.1299/jsmeimpt.2017.02-13
[4] R. Bauer, M. Dix "Novel method for manufacturing herringbone gears by power skiving", Procedia CIRP, vol. 112, pp. 310-315. 2022
https://doi.org/10.1016/j.procir.2022.09.003
[5] https://www.dvs-technology.com/en/wmz/technologien/skiving.
[6] I M. Inuia, Y. Huang, H. Onozuka, N. Umezu "Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation', Procedia Manufacturing, vol. 48, pp. 520-527, 2020. 
https://doi.org/10.1016/j.promfg.2020.05.078
[7] A. Antoniadis "Gear skiving-CAD simulation approach", Computer-Aided Design, vol. 44, no. 7, pp. 611-616, 2012.
https://doi.org/10.1016/j.cad.2012.02.003
[8] P. McCloskey, A. Katz, L. Berglind, K. Erkorkmaz, E. Ozturk, F. Ismail "Chip geometry and cutting forces in gear power skiving", CIRP Annals, vol. 68 no 1, pp. 109-112, 2019.
https://doi.org/10.1016/j.cirp.2019.04.085
[9]T. Bergs, A. Georgoussis A., C. Löpenhaus, "Development of a numerical simulation method for gear skiving", Procedia CIRP, vol. 88, pp. 352-357, 2020.
https://doi.org/10.1016/j.procir.2020.05.061
[10] M. Krömer, C. Brecher, C. Löpenhaus, G. Weber, "Validierung von spanenden Fertigungssimulationen am Beispiel Wälzfräsen". In GETPRO. Kongress zur Getriebeproduktion. Eigenverlag, Frankfurt a.M. 2015.
[11] H. Onozuka, F. Tayama, Y. Huangb, M. Inuib "Cutting force model for power skiving of internal gear', Journal of Manufacturing Processes, vol. 56(B), pp. 1277-1285, 2020.
https://doi.org/10.1016/j.jmapro.2020.04.022
[12] A. Antoniadis, N. Vidakis, N. Bilalis. A simulation model of gear skiving.  Journal of Materials Processing Technology, 146(2):213-220, 2004. doi:10.1016/j.jmatprotec.2003.10.019
https://doi.org/10.1016/j.jmatprotec.2003.10.019
[13] D. Spath, A. Hühsam, "Skiving for high-performance machining of periodic structures", CIRP Annals, vol. 51, no. 1, pp. 91-94, 2002.
https://doi.org/10.1016/S0007-8506(07)61473-5
[14] T. Tachikawa, D. Iba, N. Kurita, M. Nakamura, I. Moriwaki "Basic study on calculation of cutting forces useful for reducing vibration in skiving", Journal of Mechanical Design, vol. 139, no. 10, 104501, 2017
https://doi.org/10.1115/1.4037625
[15] F. Klocke, C. Brecher, C. Löpenhaus, P. Ganser, J. Staudt, M. Krömer "Technological and Simulative Analysis of Power Skiving", Procedia CIRP, vol. 50, pp. 773-778, 2016.
https://doi.org/10.1016/j.procir.2016.05.052
[16] N. Tapoglou "Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation", International Journal of Advanced Manufacturing Technology, vol. 100, no. 5-8, pp. 1779-1785, 2019.
https://doi.org/10.1007/s00170-018-2790-3
[17] V. Schulze, C. Kühlewein, H. Autenrieth "3D-FEM modeling of gear skiving to investigate kinematics and chip formation mechanisms", Advanced Materials Research, vol. 223, pp. 46-55, 2011.
https://doi.org/10.4028/www.scientific.net/AMR.223.46
[18] Y. Bulyha, A. Slabkyi, Fundamentals of tool production, Vinnytsia: VNTU, 2018, 149. [in Ukrainian].
[19] I. Hrytsay, V. Stupnytskyy, V. Topchii "Improved method of gear hobbing computer-aided simulation", Archive of mechanical engineering, vol. 66, no 4, pp. 475-494, 2019
https://doi.org/10.24425/ame.2019.131358
[20] I. Hrytsay, A. Slipchuk "Features of using the power skiving method for multi-pass cutting of internal gears" Archive of Mechanical Engineering, vol. 71, no 2, pp. 1-14, 2024
https://doi.org/10.24425/ame.2024.149636
[21] A. Slipchuk "Simulation of undeformed chip formed during cutting for internal crown tooth by the " POWER SKIVING " method", Bulletin of NTU "KhPI". Series: New solutions in modern technologies, vol. 3, no 17, pp. 26-33, 2023.
https://doi.org/10.20998/2413-4295.2023.03.04
[22] A. Slipchuk  "Modeling of undeformed chip in power skiving gear cutting process", Scientific Journal of TNTU (Tern.), vol 111, no 3, pp. 84-96, 2023.
https://doi.org/10.33108/visnyk_tntu2023.03.084
[23] I. Hrytsay, A. Slipchuk, M. Bosansky "Justification of the Choice of Parameters for the Gear Power Skiving Operation Based on Computer Simulation", Strojnícky časopis-Journal of Mechanical Engineering, vol. 73, no 2, pp. 33-44, 2023
https://doi.org/10.2478/scjme-2023-0020