The article presents an extended analytical review of the current state, historical development, technical characteristics, experimental results, application areas, and prospects of low-cost GNSS receivers (LC GNSS). Single-frequency (SF-LC), dual-frequency (DF-LC), and multi-frequency (MF-LC) models are considered with an analysis of positioning accuracy, stability, multi-path effects, antenna, and software compatibility. The paper demonstrates advantages and limitations of LC GNSS receivers in geodesy, navigation, structural health monitoring, agriculture, and atmospheric studies. It also represents the results of the development, design features, and experimental testing of the multi-system LC GNSS receiver "BASE-970." For testing reasons, the receiver was applied for geodynamic monitoring in the 2025 Ukrainian Antarctic Expedition to the Akademik Vernadskyi Station, as well as for deformation monitoring of hydraulic engineering structures in Ukraine. Constructions and functional schemes of various receiver modifications are described. Experimental studies of positioning accuracy in static and kinematic modes using Precise Point Positioning (PPP) and differential positioning methods were carried out. The results demonstrate that in static mode, the positioning accuracy reaches 2–4 mm for horizontal coordinates and 3–6 mm for height, comparable to the performance of professional receivers of leading global manufacturers. In kinematic mode, the horizontal coordinates are determined with a standard deviation of 25 mm, and the vertical component of 44 mm. The developed receiver is characterized by low cost, high reliability, and broad functional capabilities, which ensures its effective use in scientific research and practical tasks for deformation monitoring of engineering structures and geodynamic phenomena.
- Baran, P., Burak, K., & Tretyak, K. (2011). Inzhenerno-geodezychni roboty v Ukraini [Engineering and geodetic works in Ukraine]. Visnyk Geodezii ta Kartohrafii, (5), 19–26.
- Calian GNSS. (2025). GNSS antennas and smart technology. Retrieved from https://www.calian.com/advanced-technologies/gnss
- Cina, A., & Piras, M. (2015). Performance of low-cost GPS receivers for land surveying. Geomatics, Natural Hazards and Risk, 6(5-7), 470–485. https://doi.org/10.1080/19475705.2014.940944
- Glotov, V. M., Tretyak, K. R., & Yakhtorovych, R. I. (2021). Sposib vyznachennia vertykalnoho zminshennia anteny pryimacha HNSS [Method for determining the vertical displacement of the GNSS receiver antenna]. Patent of Ukraine No. 147763.
- Glotov, V. M., Tretyak, K. R., & Yakhtorovych, R. I. (2021). Sposib vyznachennia vertykalnoho zminshennia anteny pryimacha HNSS [Method for determining the vertical displacement of the GNSS receiver antenna]. Patent of Ukraine No. 147764.
- Hamza, V., Stopar, B., Sterle, O., & Pavlovčič-Prešeren, P. (2025). Recent advances and applications of low-cost GNSS receivers: A review. GPS Solutions, 29, Article 56. https://doi.org/10.1007/s10291-025-01456-8
- Harxon Corporation. (2025). High-precision GNSS antennas and UHF radios. Retrieved from https://en.harxon.com
- Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2008). GNSS – Global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer.
- Krietemeyer, S., et al. (2022). Field antenna calibration techniques for LC GNSS. Journal of Geodesy, 96, Article 12. https://doi.org/10.1007/s00190-022-01512-x
- Leica Geosystems AG. (2025). Leica Infinity (Version 3.1.1) [Computer software]. https://leica-geosystems.com/products/gnss-systems/software/leica-infinity
- Natural Resources Canada. (2025, May 14). Precise Point Positioning – Canadian Spatial Reference System. https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-outils/ppp.php
- NovAtel Inc. (2018). GrafNav/GrafNet® (Version 8.70) [Computer software]. https://novatel.com/products/waypoint-post-processing-software/grafnav
- PrideLab. (2025). PRIDE-PPPAR (Version 3.1.4) [Computer software]. https://github.com/PrideLab/PRIDE-PPPAR
- Robustelli, U., et al. (2023). PPP-RTK performance of low-cost receivers using commercial correction services. GPS Solutions, 27, Article 33. https://doi.org/10.1007/s10291-023-01433-9
- Savchuk, V. (2009). Analiz tochnosti koordynat u merezhi ZakPOS [Accuracy analysis in ZakPOS network]. Geodeziia, Kartohrafiia i Aerofotoznimannia, 71, 94–97.
- Stopar, B., Sterle, O., Pavlovčič-Prešeren, P., & Hamza, V. (2024). Observations and positioning quality of low-cost GNSS receivers: A review. GPS Solutions, 28, Article 149. https://doi.org/10.1007/s10291-024-01686-8
- Trimble Inc. (2022). Alloy GNSS reference receiver user guide (Rev. G, Part Number 022506-243G). Retrieved from https://trl.trimble.com/dscgi/ds.py/Get/File-867350/022506-243G_en-US_Alloy_GNSS_Ref_Receiver_USL_1122.pdf
- Tsakiri, M., Sioulis, D., & Piniotis, G. (2017). Evaluation of low-cost GNSS receivers for geodetic applications. Journal of Applied Geodesy, 11(4), 233–245. https://doi.org/10.1515/jag-2017-0020
- Vidal, B., Paziewski, J., & Teunissen, P. J. G. (2024). Performance of MF-LC GNSS receivers in PPP and PPP-RTK. GPS Solutions, 28, Article 81. https://doi.org/10.1007/s10291-024-01529-0
- Vivat, A. Y., Litynskyi, V., & Pokotylo, I. Y. (2011). Doslidzhennia tochnosti vyznachennia koordynat HNSS metodom u rezhymi RTK [Accuracy investigation of RTK GNSS positioning]. Geodeziia, Kartohrafiia i Aerofotoznimannia, 52–59.
- Vodyanykh, A. (2005). Perspektyvy rozvytku vitchyznianykh HNSS-tekhnolohii v Geodezii [Prospects for the development of domestic GNSS technologies in geodesy]. Suchasni dosiahnennia Geodezychnoi nauky ta vyrobnytstva, (II), 43–48.
- Zademleniuk, O. (2010). Osoblyvosti zastosuvannia servisu ZakPOS u polovykh umovakh [Features of ZakPOS service in field conditions]. Visnyk Geodezii, 3, 17–20.
- Ziebart, M. (2001). High precision orbit determination for low Earth orbiting satellites using GPS (Doctoral dissertation, University College London).