Vaseline Oils as Absorbents of Liquid Hydrocarbons from Natural and Artificial (Pyrolysis) Gases

2025;
: pp. 582 - 589
1
Vasyl Stefanyk Precarpathian National University
2
National Aviation University
3
Lviv Polytechnic National University, Ukraine
4
Gas Processing Plant, PJSC Ukrnafta, Ukraine

The study explores various methods for removing C5+ liquid hydrocarbons from both natural and synthetic (pyrolysis-derived) gases. It also addresses the main challenges and inefficiencies associated with the currently used technologies. In particular, the proposed approach shows promise for purifying pyrolysis gases, such as methane or hydrogen. The research focuses on the physical and chemical properties of commercial vaseline oils and their potential use as absorbents for C5+ hydrocarbons. A correlation has been identified between the hydrocarbon chain length and the absorption efficiency of vaseline oils.

[1] Boichenko, S. Innovative Chemmotological Thought as an Integrated System of Knowledge. Chem. Chem. Technol. 2014, 8, 349–358. https://doi.org/10.23939/chcht08.03.349

[2]  Al-Rumaihi, A.; Shahbaz, M.; Mckay, G.; Mackey, H.; Al- Ansari, T. A Review of Pyrolysis Technologies and Feedstock: A Blending Approach for Plastic and Biomass towards Optimum Biochar Yield. Renewable Sustainable Energy Rev. 2022, 167, 112715. https://doi.org/10.1016/j.rser.2022.112715

[3]  Pavliukh, L.; Boichenko, S.; Onopa, V.; Tykhenko, O.; Topilnytskyy, P.; Romanchuk, V.; Samsin, I. Resource Potential for Biogas Production in Ukraine. Chem. Chem. Technol. 2019, 13, 101–106. https://doi.org/10.23939/chcht13.01.101

[4]  Bee, S.; Bhagvara, S. Membrane Based Gas Separation: Principle, Applications and Future Potential; 2014.

[5] Food Standards Agency. Survey of Printing Inks and Mineral Oils; London, 2011, December 15. Archived from the original on May 15, 2012.

[6]  Li, G.; Kujawski, W.; Valek, R.; Koter, S. A Review – The Development of Hollow Fibre Membranes for Gas Separation Processes. Int. J. Greenhouse Gas Control 2021, 104, 103195. https://doi.org/10.1016/j.ijggc.2020.103195

[7]  Yang, L.; Cheng, X.; Huang, C.; Liu, S.; Ning, B.; Wang, K. A Review of Gas-Liquid Separation Technologies: Separation Mechanism, Application Scope, Research Status, and Development Prospects. Chem. Eng. Res. Des. 2024, 201, 257–274. https://doi.org/10.1016/j.cherd.2023.12.009

[8]  Yang, L.; Zhang, J.; Ma, Y.; Hu, J.; Wang, J. Experimental and Numerical Study of Separation Characteristics in Gas-Liquid Cylindrical Cyclone. Chem. Eng. Sci. 2020, 214, 115362. https://doi.org/10.1016/j.ces.2019.115362

[9]  Lavenson, D.; Kelkar, A.; Daniel, A.; Mohammad, S.; Kouba, G.; Aichele, C. Gas Evolution Rates – A Critical Uncertainty in Challenged Gas-Liquid Separations. J. Pet. Sci. Eng. 2016, 147, 816–828. https://doi.org/10.1016/j.petrol.2016.07.015

[10] Suwarno; Darma, I. S. Dielectric Properties of Mixtures Between Mineral Oil and Natural Ester. Proc. Int. Symp. Electr. Insul. Mater. (ISEIM) 2008, 514–517. https://doi.org/10.1109/ISEIM.2008.4664471

[11] Boichenko, S.; Yakovlieva, A.; Zubenko, S.; Konovalov, S.; Shkilniuk, I.; Artyukhov, A.; Wit, B.; Czarnocki, K.; Wołowiec, T. Properties of Components of Renewable Motor Fuel Based on Plant Oils and Assessment of Their Compatibility with Traditional Fuels. Energies 2024, 17, 6390. https://doi.org/10.3390/en17246390

[12] Tien, C. Introduction to Adsorption: Basics, Analysis and Applications; Elsevier, 2019. https://www.sciencedirect.com/science/book/9780128164464

[13]Drioli, E.; Giorno, L. Gas Separation. In Encyclopedia of Membranes; Springer, 2015. https://doi.org/10.1007/978-3-642- 40872-4_112-1

[14] Aregbe, A. Natural Gas Flaring–Alternative Solutions. World Journal of Engineering and Technology 2017, 5, 139–153. https://doi.org/10.4236/wjet.2017.51012

[15] CODE of the gas transmission system. https://tsoua.com/wp- content/uploads/2020/12/GTS_Code_Eng_01-01-2021.pdf

[16] Pyshyev, S.; Lypko, Y.; Demchuk, Y.; Kukhar, O.; Korchak, B.; Pochapska, I.; Zhytnetskyi, I. Characteristics and Applications of Waste Tire Pyrolysis Products: A Review. Chem. Chem. Technol. 2024, 8, 244–257. https://doi.org/10.23939/chcht18.02.244

[17] de Morais, E. G.; da Silveira, J. T.; Schüler, L. M. Biomass Valorization via Pyrolysis in Microalgae-Based Wastewater Treatment: Challenges and Opportunities for a Circular Bioeconomy. J. Appl. Phycol. 2023, 35, 2689–2708. https://doi.org/10.1007/s10811-023-03104-x

[18] Pyshyev S., Lypko Y., Chervinskyy T., Fedevych O., Kułażyński M., Pstrowska K. Application of Tyre Derived Pyrolysis Oil as a Fuel Component. S. Afr. J. Chem. Eng. 2023, 43, 342–347. https://doi.org/10.1016/j.sajce.2022.12.003

[19] Miroshnichenko, D.; Shmeltser, K.; Kormer, M.; Sahalai, D.; Pyshyev, S.; Kukhar, O.; Korchak, B.; Chervinskyy, T. Influence of Raw Materials and Technological Factors on the Sorption Properties of Blast-Fuel Coke. ChemEngineering 2024, 8, 30. https://doi.org/10.3390/chemengineering8020030

[20] Ribun V., Boichenko S., Kale U. Advances in Gas-to-Liquid Technology for Environmentally Friendly Fuel Synthesis: Analytical Review of World Achievements. Energy Rep. 2023, 9, 5500. https://doi.org/10.1016/j.egyr.2023.04.372