The study of the extraction process of the target components contained in the layer of grain material is presented. The process concerns the dissolution of solids from the outer surface of the solids and the extraction of the dissolved material from the layer of inert grain material in the stationary layer.
The experimental equipment (vertical column), the method of carrying out experiments and the analysis of copper sulfate in a liquid, at the output of the column were described. Experimental studies were carried out on vertical column-type equipment made of 1 cm glass. In the bottom of the equipment there was a perforated partition, which was covered with a pre-cooked mixture of inert solids and solvent particles. The research was conducted on the example of copper sulfate.
In the first part of this study, we determined the value of the coefficient of mass deducing during the dissolution of copper sulfate particles in distilled water for different particle sizes and the velocity of fluid transfer corresponding to the rate during the extraction of copper sulfate from the stationary layer. For the constancy of the physical parameters of the process (temperature, solubility, viscosity, coefficient of molecular diffusion), the particle size was the main parameter. The research was carried out for three different diameters of spherical shape particles, namely 8; 6; 4 mm. The initial concentration of copper sulfate at the output of the column apparatus was determined.
On the basis of the obtained experimental data, the coefficient of mass deducing was determined. Depending on the value of the Reynolds number, the generalization of the experimental data on dependence, which is valid in the range of Reynolds numbers 1 < Rе < 3, was carried out. The satisfactory coincidence of these parameters indicates the possibility of using this dependence in analyzing of processes in a layer of grain material. The coefficient of mass deducing was experimentally determined and its value was presented in dimensionless complexes.
The experimentally obtained data of the concentration of copper sulfate were compared with the theoretically calculated concentrations in order to confirm the adequacy of the mathematical model for this extraction process.
The theoretical consideration of this process indicates the existence of two separate stages of its conduction. This process simultaneously represents two mass-exchange processes - dissolution and extraction. In the first stage, the process of dissolving of the upper layer of particles was considered when the height of the layer is z = 0. In this case, the concentration of the dissolved target component is only a function of time and does not depend on linear dimensions. At the same time, this allows us to determine the distribution of concentrations in height, which can be used for further analysis. The second stage is the extraction process after dissolution of the upper layer and displacement of the dissolution boundary.
The mathematical model of this process was made which allows to determine the concentration of the component in a dimensionless form for a certain height of the layer and the time of extraction. Theoretical values were compared with the experimental ones.
1. Гумницький Я. М., Петрушка І. М. Інженерна екологія. Ч. ІІ. – Львів: Вид-во Львівської
політехніки. – 216. – 348 с. 2. Аксельруд Г. А., Молчанов А. Д. Растворение твердых веществ. – М.:
Химия. – 1977. – 272 с. 3. Моргенштерн Л. А. Процесс получения хлорида калия методом
разложения карналита водой (холодной кристализации) // ТОХТ. – 2014. – Т. 48, № 1 – С. 122–124.
4. Хацевич О. М., Артус М. І., Костів І. Ю. Безхлорне калійне добриво. Технологія конверсії
мірабіліту з калій хлоридом у хлормагнієвому розчині // Хім. пром. України. – 2015. №3 (128). –
С. 37–41. 5. Артус М. І., Костів І. Ю. Полімінеральні калійно-магнієві руди в оборотних шенітових
розчинах // Хім. пром. України. – 2015. №6 (125) с. 39–43. 6. Натареев С. В., Кокина Н. Р.,
Натареев О. С., Дубкова Е. А. Массоперенос в системе с твердым телом. – 2015. Т. 49, № 1. –
С. 74– 78. 7. Symak, D., Atamaniuk, V., Gumnitsky, Ya. (2015). Analysis of dissolution kinetics dased on
the lokal isotropic turbulence theory. Chemistry & Chemical Technology, 9, 4, 493–497. 8. Кулов Н. Н.,
Гордеев Л. С. Математическое моделирование в химической технологии и биотехнологии //
ТОХТ. – 2014. – Т. 48. – № 3. – С. 243–248. 9. Sabadash V., Mylanyk O., Matsutska O. & Gumnytsky J.
(2017). Kinenic regularities of copper ions adsorption by natural zeolite // Chemistry & Chemical
Technology. 11(4). 459 – 462. 10. Бабенко Ю. И., Иванов Е. В. Влияние нестационарных еффектов на
скорость растворения одиночной частицы // ТОХТ. – 2013. – Т. 47, №6. – С. 624–629. 11. Symak D. M.,
Liuta O. V. (2015). Nestatsionarnyi protses rozchynennia sharu zernystoho materialu. Khimiia,
tekhnolohiia rechovyn ta yikh zastosuvannia, 812, 308–312. 12. Мелихов И. В., Долгоносов Б. М.,
Еленин Г. Г., Соснин Н. В. Растворение полидисперсной твердой фазы в плотном слое// Теор.
основы хим. технологии. – 1989. – Т. 23. – № 1. – С. 101–104. 13. Аksielrud G.& Lysianski W. (1978).
Ekstrakcja w ukladzie cialo stale – ciecz. – Warszawa: Wydaw, Nauk. – Techn. 275 s. 14. Семенишин Є. М.
Особливості екстрагування цільових компонентів з пористих структур / Є. М. Семенишин,
В. І. Троцький, В. І. Федорчук-Мороз // Наук. вісник Українського держ. лісотехн. університету. –
2004. – Вип. 14.4. – С.317 – 321. 15. Гумницький Я. М. Кінетика екстрагування міді сульфату з
пористих частинок / Я. М. Гумницький, В. М. Атаманюк, Д. М. Симак // Інтегровані технології та
енергозбереження. – 2017. – № 4. – С.23 – 27. 16. Humnytskyi, Ya. M., Symak, D. M. (2015).
Intensyfikatsiia masoobminnykh protsesiv u systemi tverde tilo–ridyna vvedenniam hazovoi fazy //
Materialy XVIII Mizhnarodnoi naukovo-praktychnoi konferentsii, 1. – 34–35.