Electric Arc Furnaces (EAF) are the main electrotechnological units that produce high-alloy, special steels and precision alloys. Its efficiency is determined by the impeccable subsystem of the Electrical Mode control (EM) and regulating coordinates of the subsystem. These subsystems constitute the structure of the hierarchical control system of electric steelmaking modes, which belong to a class of complex interconnected nonlinear stochastic systems with intense parametric and coordinate perturbations and phase-asymmetric loading.
In the article, the analyzed movement dynamics indicators of electrodes during deterministic perturbation sequences during implementation of various models of an electrodes movement control signal synthesis. This problem is vital in solving the complex problem of the synthesis of adaptive optimal control of electric steelmaking modes according to the indicators of electrotechnological efficiency of EAF and electromagnetic compatibility of its modes with the electrical grid. Study of the dynamics indicators was performed on a three-phase instantaneous coordinates Simulink computer model of the power supply with variation of the laws of the mismatch-generating signals for the EM and parameters of the electrode position control subsystem.
The article presents the obtained time dependences of the coordinate changes of the EM and the subsystem for adjusting the arc-lengths, and performs their analysis. The vector of variable parameters and law models that determine the mismatch signal of the EM, which is expedient to put in as a basis when designing steps for melting steal on the given EAF, are substantiated. The analysis was performed based on the received estimations of the indicators sensitivity of the dynamics of the electrode movement to gain of a subsystem of electrodes position regulation and differential and voltage laws of the mismatch-generating signals for the EM. The positive properties of the voltage law of the mismatch- generating signals is substantiated, in particular, its much higher phase-by-phase autonomy of the EM coordinate regulation is illustrated in comparison with the differential model.
- http://nashkotel.yu/dugovaya-staleplavilnaya-pech.html
- Kazakov S. V., Hartov V. Vosʹmaya mizhnarodna konferentsiya po elektrometallurhiyi stali // Elektrometallurhiya. 2005. No 12. S. 36-43.
- Kudrin B. Y. Retrospektyvni ta perspektyvni vz·hlyady na elektropotreblennya v elektrometallurhiyi // Elektrometallurhiya. 2003. No 10. S. 2-13.
- Lopukhov H. A. Stan ta tendentsiyi rozvytku elektrostaleplavilʹnoho vyrobnytstva (za materialamy 33 konferentsiyi IISI // Elektrometallurhiya. 2000. No 7. S. 35-37
- Lypshyn Y. V. Avtomatyzatsiya duhovykh pechey. M .: Yzd-vo MHU, 2004. 167 s.
- Lynnynher A. A. , Patutstsy A. A. Suchasne tekhnolohichne ta informatsiyne upravlinnya na prykladakh konstruyuvannya duhovoyi elektropechi // Chorni metaly. 1995. No 3. S. 23-33.
- Parsunkyn B. N., Andreev S. M., Akhmetov U. B. Optymizatsiya upravlinnya tekhnolohichnymy protsesamy v metalurhiyi Monhrafiya - Mahnitohorsʹk HOU VPO «MHTU im. H. Y. Nosova», 2006. 198 s.
- Lozynsʹkyy O. Yu., Paranchuk YA. S., Lozynsʹkyy A. O., Marushchak Ya. Yu. Matematychna modelʹ systemy zhyvlennya ta rehulyuvannya rezhymiv elektrotekhnichnoho kompleksu DSP-EPM // Naukovyy visnyk Natsionalʹnoho hirnychoho universytetu. 2004. No 3. S. 8-15.