Initiating and Cross-Linking Properties of Urea-Formaldehyde Oligomers with Peroxide Groups

The initiating properties of urea-formaldehyde oligomers with peroxide groups have been studied. For comparison, the initiating activity has been examined for the polymerization of styrene by the peroxide oligomer based on the epoxy oligomer Epidian-5 and tert-butyl hydroperoxide. The cross-linking properties of the urea-formaldehyde oligomers with peroxide groups have been investigated using unsaturated oligoesters as a model. The chemistry of the formation of the substances with a cross-linked structure has been studied using IR spectroscopy.

Synthesis and Cross-Linking Properties of Melamine Formaldehyde Oligomers with Peroxy Groups

Melamine formaldehyde oligomers with peroxy groups (MFOP) have been synthesized based on melamine or urea and melamine in the presence of tert-butyl peroxymethanol or tert-butyl hydroperoxide. Zinc oxide was used as a catalyst. The effect of peroxide nature, ratio of the starting components and process time on the characteristics and yield of MFOP has been studied. The structure of the synthesized MFOP was confirmed by IR- and PMR-spectroscopy. The chemistry of the cross-linked structures formation was studied.

Synthesis and Structure of Urea-Formaldehyde Oligomers with Peroxide Groups

The possibility of synthesis in the presence of tert-butyl peroxymethanol (TBPM) or tert-butyl hydroperoxide (TBHP) of urea-formaldehyde oligomers with peroxide groups (UFOP) has been considered. Zinc oxide was used as the reaction catalyst. The effect of the initial components ratio, the reaction temperature and the process time on the characteristics and yield of the obtained oligomers was studied. Methods for obtaining UFOP using a mixture of TBPM and TBHP as a component are proposed. The structure of the synthesized UFOP was confirmed by IR- and NMR-spectroscopic studies.

Epoxy Composites Filled with Natural Calcium Carbonate. 1. Epoxy Composites Obtained in the Presence of Monoperoxy Derivative of Epidian-6 Epoxy Resin

Physico-mechanical properties of the products based on filled epoxy-oligomeric mixtures composed of Epidian-5 epoxy resin, oligoesteracrylate TGM-3 and monoperoxide derivative of Epidian-6 epoxy resin (PO) have been investigated. CaCO3 was used as a filler and polyethylene polyamine was a curing agent. The effect of PO and CaCO3 on the gel-fraction content and physico-mechanical properties was examined. Using a scanning electron microscopy (SEM) the morphology of the samples has been studied.

Obtaining of Coumarone-Indene Resins Based on Light Fraction of Coal Tar. 2. Coumarone-Indene Resins with Epoxy Group

Coumarone-indene resins with epoxy groups (CIRE) have been obtained using light fraction of coal tar or fraction with the distillation range of 423–463 K based on it. Styrene and glycidyl methacrylate were used as modifiers. CIRE were synthesized via radical cooligomerization using monoperoxide derivative of dioxyphenylpropane diglycidyl ether (PO) as an initiator. Thermal stability of PO has been studied. The effect of initiator amount, reaction temperature and time on the yield and softening temperature of CIRE has been determined.

Synthesis of peroxy oligomers on the basis of epoxy compounds in presence of tert-butylperoxymethanol

We have studied the possibility of peroxy oligomers synthesis by chemical modification of epoxy resins with tert-butylperoxymethanol or diepoxy compounds telomerization with glycols in the presence of trifluorine boron using tert-butylperoxymethanol as telogen. The reaction conditions have been determined and synthesis procedures have been developed. The structures of synthesized products were proved by chemical, IR- and PMR-spectroscopic investigations.

Synthesis of peroxy oligomers using 1,2-epoxy-3-tert-butyl peroxypropane

The possibility of peroxy oligomer synthesis has been studied by three methods: telomerization of diepoxy derivatives of ethylene glycol or Bisphenol A using 1,2-epoxy-3-tert-butyl peroxypropane as telogen, modification of phenol-formaldehyde resins by 1,2-epoxy-3-tert-butyl peroxypropane and polycondensation of phenol containing –O–O– bonds with formaldehyde. The peroxy oligomers obtaining conditions have been established and 7 new oligomers with peroxy groups have been synthesized. The structures of synthesized oligomers have been verified by chemical and spectral methods.

Novel Functional Derivatives of Methyl-cis-9,10-Epoxy-Octadecanoate

The synthesis of functional derivatives of epoxystearic acid methyl ester by oxirane ring opening and transesterification of ester group has been described. Some novel surface-active and peroxide-containing compounds have been obtained. Major features of the process have been investigated and main characteristics have been determined.

Cooligomerization of C9 Fraction Unsaturated Hydrocarbons Initiated by Organic Peroxides

The work deals with the cooligimerization of C9 fraction unsaturated hydrocarbons of pyrolysis liquid products (PLP) obtained during ethylene production from diesel fuel. The main regularities of coologomerization initiated by peroxides have been determined, the influence of the main factors (temperature, process time, initiators nature and concentration) on the yield and physico-chemical characteristics of the obtained cooligomers have been examined. The effective initiator of cooligomerization and optimal techno logical parameters of the process have been chosen.

Chemical Modification of Polyglycidyl Phenol-Formaldehyde Oligomers by Methacrylic Acid

A new oligomer with unsaturated double bonds in the side chains has been synthesized via chemical modification of polyglycidyl phenol-formaldehyde oligomers (PGPFO) by methacrylic acid (MA) using benzyltriethylammonium chloride as a catalyst. The effect of temperature and reaction time on the reaction proceeded between PGPFO and MA has been studied. The effective rate constants and activation energy of the reaction have been calculated. The structure of the synthesized oligomer has been confirmed by chemical and IR-spectroscopic analyses.