INVESTIGATION OF TIME SCALING FOR THE INVERTED BETA FUNCTIONS

2019;
: 72-75
https://doi.org/10.23939/ujit2019.01.072
Received: November 04, 2019
Accepted: November 20, 2019

Цитування за ДСТУ: Дронюк І. М., Шпак З. Я., Демида Б. А. Дослідження зміни часового масштабу для обернених Beta-функцій. Український журнал інформаційних технологій. 2019, т. 1, № 1. С. 72–75.

Citation APA: Dronyuk, I. M., Shpak, Z. Ya., & Demyda, B. A. (2019). Investigation of time scaling for the inverted Beta functions. Ukrainian Journal of Information Technology, 1(1), 72–75. https://doi.org/10.23939/ujit2019.01.072

1
Lviv Polytechnic National University, Department of Automated Control Systems
2
Lviv Polytechnic National University, Lviv, Ukraine
3
Lviv Polytechnic National University

The use of Ateb-functi­ons is de­ter­mi­ned by tho­se are­as whe­re or­di­nary tri­go­no­met­ric functi­ons are used. Mo­dern ad­van­ces in physics ha­ve led to the de­ve­lop­ment of new mat­he­ma­ti­cal are­as that req­ui­re the re­la­ti­vity or va­ri­abi­lity of ti­me. The cur­rent re­se­arches in this fi­eld and ma­in re­sults of stu­di­es of the or­di­nary Ateb functi­ons are bri­efly descri­bed. To ta­ke in­to ac­co­unt compres­si­on/slow-down as a pro­perty of ti­me pa­ra­me­ter, the q-ana­logs of Ateb-si­ne (q-Ateb-si­ne) and Ateb-co­si­ne (q-Ateb-co­si­ne) are construc­ted by in­ver­ting the in­comple­te q-Be­ta functi­ons. The chan­ge in pa­ra­me­ter q cor­res­ponds to the ti­me sca­ling in the stu­di­es. q-ana­logs of Ateb-tan­gent (q-Ateb-tan­gent), Ateb-co­tan­gent (q-Ateb-co­tan­gent), Ateb-se­cant (q-Ateb-se­cant) and Ateb-co­se­cant (q-Ateb-co­se­cant) are intro­du­ced. The­orems cha­rac­te­ri­zing the ba­sic pro­per­ti­es of the construc­ted functi­ons are pro­ved. In par­ti­cu­lar, it is shown that when q→1, ta­king the li­mit we ob­ta­in or­di­nary Ateb-functi­ons. The intro­du­ced functi­ons are pe­ri­odic with the pe­ri­od cor­res­pon­ding to q-ana­log­ue pe­ri­ods of the or­di­nary Ateb-functi­ons. The rep­re­sen­ta­ti­on of the pe­ri­od using the q-ana­log­ue of the Gam­ma-functi­on is construc­ted. The ge­ne­ra­li­zed Pytha­go­re­an iden­tity for the q-ana­log­ues of tri­go­no­met­ric Ateb-functi­ons is pro­ved. Al­so the pro­per­ti­es of the pa­rity and od­dity of the­se functi­ons are con­si­de­red and pro­ved. The in­ter­vals of incre­asing/dec­re­asing for all functi­ons are fo­und. The q-ana­log­ues of the iden­ti­ti­es for­mu­las for the tri­go­no­met­ric Ateb-functi­ons are pre­sen­ted. For­mu­las for cal­cu­la­ting q-de­ri­va­ti­ves for the q-ana­log­ue of tri­go­no­met­ric Ateb-functi­ons are construc­ted. It is pro­ved that construc­ted functi­ons sa­tisfy the system of q-de­ri­va­ti­ve dif­fe­ren­ti­al eq­ua­ti­ons. Re­sults of the pre­sen­ted stu­di­es can be used in the ti­me se­ri­es the­ory and sig­nal pro­ces­sing.

[1]     Andri­anov, I. V., Aw­rej­ce­wicz, J., & Da­nis­hevskyy, V. V. (2018). Asympto­ti­cal Mec­ha­nics of Com­po­si­tes. Mo­del­ling Com­po­si­tes wit­ho­ut FEM. New York, Ber­lin He­idel­berg: Sprin­ger, 329 p.

[2]     Andri­anov, I. V., Aw­rej­ce­wicz, J., & Ma­ne­vitch, L. I. (2004). Asympto­ti­cal Mec­ha­nics of Thin-Wal­led Struc­tu­res: A Handbo­ok. Ber­lin, He­idel­berg: Sprin­ger-Ver­lag, 535 p.

[3]     Cieśliński, J. L. (2009). New de­fi­ni­ti­ons of ex­po­nen­ti­al, hyper­bo­lic and tri­go­no­met­ric functi­ons on ti­me sca­les, prep­rint ar­Xiv:1003.0697 [math. CA].

[4]     Cve­tićanin, L. (2015). Dyna­mics of Bo­di­es with Ti­me-Va­ri­ab­le Mass, Mat­he­ma­ti­cal and Analyti­cal Techniq­ues with Appli­ca­ti­ons to En­gi­ne­ering. Sprin­ger, Cham.

[5]     Dra­gan, Ya., & Dron­yuk, I. (2017). System Analysis and Gro­un­ding for the Da­ta Pro­ces­sing Me­ans and Techno­lo­gi­es ba­sed on Op­ti­mi­za­ti­on of the Com­pu­ter Net­work work ba­sed on Ateb-functi­ons. Pro­ce­edings of the 12-th In­ter­na­ti­onal Sci­en­ti­fic and Techni­cal Con­fe­ren­ce, (CSIT 2017), 05–08 Sep­tem­ber, Lviv, Uk­ra­ine, (pp. 272–275).

[6]     Dron­yuk, Ivan­na. (2017b). Ateb-transforms and ge­ne­ra­li­zed shift ope­ra­tor. In Proc. The In­ter­na­ti­onal Con­fe­ren­ce in Functi­onal Analysis de­di­ca­ted to the 125-th an­ni­ver­sary of Ste­fan Ba­nach. 18-23.09.2017, Lviv, Uk­ra­ine, 39–42.

[7]     Dron­yuk, I. M. (2017a). Techno­lo­gi­es for in­for­ma­ti­on pro­tec­ti­on on tan­gib­le me­dia: Lviv Polytechnic Pub­lis­hing Hou­se, Lviv. [In Uk­ra­ini­an].

[8]     Gos­per, R. W. (2001). Ex­pe­ri­ments and Dis­co­ve­ri­es in q-Tri­go­no­metry. In Symbo­lic Com­pu­ta­ti­on, Num­ber The­ory, Spe­ci­al Functi­ons, Physics and Com­bi­na­to­rics. Pro­ce­edings of the Con­fe­ren­ce Held at the Uni­ver­sity of Flo­ri­da, Ga­ines­vil­le, FL, No­vem­ber 11–13, 1999 (Ed. F. G. Gar­van & M. E. H. Is­ma­il). Dordrecht, Net­her­lands: Klu­wer, (pp. 79–105).

[9]     Gryciuk, Yu. I., Dragan, Ya. P. (2016). Numerical integration of table functions to one variable using Taylor polynomial. Scientific Bulletin of UNFU, 26(3), 350–360. https://doi.org/10.15421/40260358.

[10]  Jan, L. (2011). Cieśliński Impro­ved q-ex­po­nen­ti­al and q-tri­go­no­met­ric functi­ons. Appli­ed Mat­he­ma­tics Let­ters 24, 2110–2114.

[11]  Kac, V., & Che­ung, P. (2002). Qu­an­tum Cal­cu­lus. New York: Sprin­ger, 320 p.

[12]  Ko­eko­ek, R., & Swartto­uw, R. F. (1998). The As­key-Sche­me of Hyper­ge­omet­ric Ortho­go­nal Polyno­mi­als and its q-Ana­log­ue. Delft, Net­her­lands: TU Delft, Fa­culty of Techni­cal Mat­he­ma­tics and In­for­ma­tics. Re­port 98–17, (pp. 18–19).

[13]  Na­zar­kevych, M. A. (2011). Met­hods of incre­asing the ef­fi­ci­ency of prin­ting pro­tec­ti­on by me­ans of Ateb functi­ons. Lviv Polytechnic Pub­lis­hing Hou­se, Lviv. [In Uk­ra­ini­an].

[14]  Ro­sen­berg, R. (1963). The Ateb(h)-functi­ons and the­ir pro­per­ti­es. Qu­art. Appt. Math., 11, 37–47.

[15]  Senyk, P. M. (1968). Abo­ut Ateb-functi­on. Do­po­vi­di AN URSR, ser. A., 1, 23–27. [In Uk­ra­ini­an].

[16]  Ve­se­lovska, O., Dro­homyretska, Kh., & Kol­ya­sa, L. (2017). Cri­te­ri­on of the con­tin­ua­ti­on of har­mo­nic functi­ons in the ball of n-di­men­si­onal spa­ce and rep­re­sen­ta­ti­on of the ge­ne­ra­li­zed or­ders of the en­ti­re har­mo­nic functi­ons in n in terms of appro­xi­ma­ti­on er­ror. Eas­tern-Eu­ro­pe­an Jo­ur­nal of En­terpri­ses Techno­lo­gi­es, 4(88), 1–10. https://doi.org/10.15587/1729-4061.2017.10838