: 37-43
Received: May 06, 2022
Accepted: May 19, 2022
Lviv Polytechnic National University, Lviv, Ukraine
Lviv Polytechnic National University, Lviv, Ukraine
Lviv Polytechnic National University, Lviv, Ukraine
Lviv Polytechnic National University, Lviv, Ukraine

The paper deals with the urgent issue of improving the professional software for text statistical analysis in accordance with the needs of specialists. Peculiarities and prospects of statistical research in linguistics are analyzed and information technology (IT) for determining the statistical profile of Ukrainian-language texts is developed. Complex work on modelling the software system was carried out, it was presented in the corresponding schemes and diagrams, which integrally reflect the functioning and purpose of the developed product. Mathematical and system bases of statistical analysis aimed at automation of professional processing of Ukrainian-language texts, in the context of introducing the offered information technology are considered. The structural scheme of the project decision is constructed and the main requirements for hardware are defined. The components of information technology are developed, and the software system structure is proposed, which is based on the modular principle. Mathematical support for IT has been developed, it is based on the methods of applied statistics and allows determining the main characteristics (statistical profile) of the studied Ukrainian-language texts. In addition, the algorithms and software for IT have been developed using Python. The results of research on Ukrainian-language texts and their statistical profiles are given, it is shown that the developed information technology provides processing of Ukrainian-language texts with a high level of automation. The obtained results can be considered as a contribution to the development of scientific research in linguistics, which creates conditions for the study of authors texts of different styles and the effective use of professional skills and knowledge by a wide range of users. The scientific novelty of the work is that a model of automated determination of the statistical profile of Ukrainian language texts has been developed, which provides an opportunity for a comprehensive study of the corpus of Ukrainian-language texts. The obtained results are also of practical significance, as the structural scheme of IT has been developed, software tools of information technology for automation of the determining the statistical profile of Ukrainian-language texts have been implemented, and the results of text investigation have been analyzed.

[1]     Bi­si­ka­lo, O. V., & Kravchuk, I. A. (2010, No­vem­ber). Analysis of the morpho­lo­gi­cal struc­tu­re of the word ba­sed on the as­so­ci­ati­ve-sta­tis­ti­cal appro­ach. Jo­ur­nal of Vinnytsia Polytechnic Insti­tu­te, 4, 134-136. Ret­ri­eved from:­dex.php/visnyk/ar­tic­le/vi­ew/1495

[2]     Buk, S. N., & Ro­venchak, A. A. (2004). Rank-Freq­uency Analysis for Functi­onal Style Cor­po­ra of Uk­ra­ini­an. Jo­ur­nal of Qu­an­ti­ta­ti­ve Lin­gu­is­tics, 11(3), 161-71.

[3]     Gra­bar, N., & Thi­erry, H. (2017, Ap­ril). Cre­ati­on of a mul­ti­lin­gu­al alig­ned cor­pus with Uk­ra­ini­an as the tar­get lan­gua­ge and its explo­ita­ti­on. Com­pu­ta­ti­onal lin­gu­is­tics and in­tel­li­gent systems (CO­LINS 2017): pro­ce­edings of the 1st In­ter­na­ti­onal con­fe­ren­ce, Na­ti­onal Techni­cal Uni­ver­sity "KhPI", 10-19. Ret­ri­eved from:

[4]     Grod­ni­ewicz, J. P. (2021). The pro­cess of lin­gu­is­tic un­derstan­ding. Synthe­se, 198, 11463-11481.

[5]     Hlushchen­ko, V. A. (2010). Lin­gu­is­tic met­hod and its struc­tu­re. Lin­gu­is­tics, 6, 32-44. Ret­ri­eved from:

[6]     Hlybo­vets, A. M., & Tochytsky, V. V. (2017). Al­go­rithm of to­ke­ni­za­ti­on and ste­aming for texts in Uk­ra­ini­an. Na­UK­MA Re­se­arch Pa­pers Com­pu­ter Sci­en­ce, 198, 4-8. Ret­ri­eved from:­UK­MAkn_2017_198_4

[7]     Ho­herchak, H., Darchuk, N., & Kryvyi, S. (2021). Rep­re­sen­ta­ti­on, Analysis, and Extrac­ti­on of Know­led­ge from Unstruc­tu­red Na­tu­ral Lan­gua­ge Texts. Cybern Syst Anal, 57, 481-500.

[8]     Khomytska, I. Y., Teslyuk, V. M., Bazylevych, I. B., & Be­re­govskyi, V. V. (2020). The sta­tis­ti­cal mo­dels and softwa­re for aut­ho­ri­al style dif­fe­ren­ti­ati­on in english pro­se. Sci­en­ti­fic Bul­le­tin of UN­FU, 30(5), 135-139.

[9]     Law­son, A. E., Oehrtman, M., & Jen­sen, J. (2008) Con­nec­ting Sci­en­ce and Mat­he­ma­tics: The Na­tu­re of Sci­en­ti­fic and Sta­tis­ti­cal Hypot­he­sis Tes­ting. Int J of Sci and Math Educ, 6, 405-416.

[10]  Levchen­ko, O., & Di­lai, M. (2021). A Met­hod of Au­to­ma­ted Cor­pus-Ba­sed Iden­ti­fi­ca­ti­on of Me­tap­hors for Com­pi­ling a Dic­ti­onary of Me­tap­hors: A Ca­se Study of the Emo­ti­on Con­cep­tu­al Do­ma­in. 2021 IEEE 16th In­ter­na­ti­onal Con­fe­ren­ce on Com­pu­ter Sci­en­ces and In­for­ma­ti­on Techno­lo­gi­es (CSIT), 52-55.

[11]  Levchen­ko, O., Holtvi­an, V., & Di­lai, M. (2021). Sta­tis­ti­cal pro­fi­les of Uk­ra­ini­an pro­se fic­ti­on: Gen­der as­pect. 2021 IEEE 16th In­ter­na­ti­onal Con­fe­ren­ce on Com­pu­ter Sci­en­ces and In­for­ma­ti­on Techno­lo­gi­es (CSIT), 97-100.

[12]  Levchen­ko, O., Tyshchen­ko, O., & Di­lai, M. (2021). Au­to­ma­ted iden­ti­fi­ca­ti­on of me­tap­hors in an­no­ta­ted cor­pus (Ba­sed on substan­ce terms). CE­UR Workshop Pro­ce­edings, 2870(3), 16-31. Ret­ri­eved from: http://ce­­per3.pdf

[13]  Lu­pen­ko, S. A., Kho­miv, B. A., & Sverstyuk, A. S. (2011) Com­pa­ra­ti­ve analysis of mat­he­ma­ti­cal mo­dels, met­hods and met­hods for eval­ua­ting opi­ni­ons in text da­ta from In­ter­net re­so­ur­ces. Bul­le­tin of Khmelnytsky Na­ti­onal Uni­ver­sity. 6, 7-16. Ret­ri­eved from: http://ce­­per3.pdf  http://jo­ur­

[14]  Lytvyn, V., Vysotska, V., Uhryn, D., Hren­dus, M., & Na­um, O. (2018). Analysis of sta­tis­ti­cal met­hods for stab­le com­bi­na­ti­ons de­ter­mi­na­ti­on of key­words iden­ti­fi­ca­ti­on. Eas­tern-Eu­ro­pe­an Jo­ur­nal of En­terpri­se Techno­lo­gi­es, 2 (2 (92)), 23-37.

[15]  Ni­ko­nen­ko, A. O. (2012). Re­vi­ew of com­pu­ter-lin­gu­is­tic met­hods of pro­ces­sing na­tu­ral lan­gua­ge texts. Ar­ti­fi­ci­al In­tel­li­gen­ce, 4, 235-244. Ret­ri­eved from: http://dspa­

[16]  Os­ta­po­va, I.V., Shi­ro­kov, V.A., Luc­hik, A. A., & Yab­lochkov, N. M. The study of the functi­oning of word eq­ui­va­lents in the text on the ma­te­ri­al of the Uk­ra­ini­an Na­ti­onal Lin­gu­is­tic Cor­pus. Spe­ech Techno­logy, (1-2), 114-120.

[17]  Parshak, K. D. (2014). Text as an ob­ject of lin­gu­is­tic re­se­arch. Sci­en­ti­fic jo­ur­nal of M. P. Dra­go­ma­nov Na­ti­onal Pe­da­go­gi­cal Uni­ver­sity. Se­ri­es 10: Prob­lems of gram­mar and le­xi­co­logy of the Uk­ra­ini­an lan­gua­ge, 11, 196-199. Ret­ri­eved from:

[18]  Pe­reb­yi­nis, V. S., (1967) Sta­tis­ti­cal style set­tings. Kyiv: Nau­ko­va Dum­ka.

[19]  Ro­ma­ni­uk, S. (2015). Appli­ca­ti­on of sta­tis­ti­cal met­hods in lin­gu­is­tic re­se­arch. Sci­en­ti­fic Pro­ce­edings of Ostroh Aca­demy Na­ti­onal Uni­ver­sity: Phi­lo­logy Se­ri­es, 54, 134-137. Ret­ri­eved from: http://ep­­rint/4185

[20]  Ro­venchak, A., & Buk, S. (2011). Appli­ca­ti­on of a qu­an­tum en­semble mo­del to lin­gu­is­tic analysis. Physi­ca A: Sta­tis­ti­cal Mec­ha­nics and its Appli­ca­ti­ons, 390(7), 1326-1331.

[21]  Shyro­kov, V., Os­ta­po­va, I., &Yakymen­ko, K. (2014) In­de­xing the etymo­lo­gi­cal le­xi­cog­rap­hic systems Cog­ni­ti­ves Stu­di­es. War­saw : SOW Pub­lis­hing Hou­se, 13-23.

[22]  Tkac­hen­ko, O., & Hu­me­ni­uk, M. (2020). As­pects of vis­ua­li­za­ti­on of sta­tis­ti­cal and sci­en­ti­fic da­ta. Di­gi­tal plat­form: in­for­ma­ti­on techno­lo­gi­es in the so­cio-cul­tu­ral sphe­re, 3(2), 134-147.

[23]  Zaiats, V. M., & Zaiats, M. M. (2010). Met­hods of com­pa­ring sta­tis­ti­cal cha­rac­te­ris­tics in the for­ma­ti­on of samples in lin­gu­is­tics. Jo­ur­nal of Lviv Polytechnic Na­ti­onal Uni­ver­sity "In­for­ma­ti­on Systems and Net­works", 673, 296-305. Ret­ri­eved from:­am/ntb/6753/1/33.pdf