Modeling of the modes of operation of wind energy installations in hybrid power supply systems

2023;
: 42-50
https://doi.org/10.23939/ujit2023.01.042
Received: February 16, 2023
Accepted: May 02, 2023

Цитування за ДСТУ: Медиковський М. О., Мельник Р. В., Мельник М. В. моделювання режимів роботи вітрових енергетичних установок у гібридних системах електропостачання. Український журнал інформаційних технологій. 2023. Т. 5, № 1. С. 42–50.

Citation APA: Medykovskyy, M. O., Melnyk, R. V., Melnyk, M. V. (2023). Modeling of the modes of operation of wind energy installations in hybrid power supply systems. Ukrainian Journal of Information Technology, 5(1), 42–50. https://doi.org/10.23939/ujit2023.01.042

1
Lviv Polytechnic National University, Lviv, Ukraine
2
Lviv Polytechnic National University, Lviv, Ukraine
3
Lviv Polytechnic National University, Lviv, Ukraine

The article presents modern schemes for the organization of wind-solar power supply systems. Available approaches to managing the energy-dynamic process of operation of wind power plants as part of hybrid power supply systems are given, and modern research on this topic is given. The results of the development of a mathematical model of the energy-dynamic processes of the hybrid wind-solar power supply system, which includes wind power plants, solar panels, and a battery energy storage system. The universal structural diagram of such a system is substantiated. A set of production rules for the implementation of management of the hybrid power supply system and a simulation model of energy-dynamic processes for possible modes of operation of the system have been developed. The simulation model was developed in the IntelliJ IDEA programming environment using the Java programming language, the Spring framework, and the PostgresDB relational database. A simulated simulation of the system's operation was carried out in order to determine the optimal operating modes depending on the restrictions on the number of switchings of each wind power plant, the structure of the system and the parameters of its elements. The input data for the study of operating modes are the wind energy potential, the solar energy potential at a given geographical point, the number and technical parameters of wind electric installations and solar panels, as well as the energy parameters of the storage element. In order to reduce the number of switching (switching on/exclusion) of wind electrical installations in the hybrid power supply system, the parameter "Minimum interval between consecutive changes in the active composition of the wind farm" was introduced. The result of simulation modelling is the establishment of the following dependencies: customer support time from the deficiency of power supply probability (DPSP); the minimum interval between determinations of the active set of the wind power plant based on the number of switchings; the minimum interval between determinations of the active composition of wind turbines from the average deviation of the generation capacity. The obtained results will make it possible to optimize the parameters and modes of operation of hybrid wind-solar systems, as well as algorithms for managing energy-dynamic modes in the design and operation of systems.

  1. Boldyrev, O., Kvytsinsky, A., Redin, M., Klopot, M., & Holovatyuk, M. (2019). Requirements for wind and solar power plants when they operate in parallel with the unified energy system of Ukraine. https://ua.energy/wp – content/uploads/2019/06/SOU – NEK–341.001_2019.pdf
  2. Veers, P. S., & Butterfield, S. (2001). Extreme load estimation for wind turbines: issues and opportunities for improved practice. AIAA Aerospace Science Meeting, 20, 44. https://doi.org/10.2514/6.2001-44 
  3. Ronold, K., & Larsen, G. (2000). Reliability-based design of wind-turbine rotor blades against failure in ultimate loading. Engineering Structures, 22(6), 565–574. https://doi.org/10.1016/S0141-0296(99)00014-0
  4. Ronold, K. O., Wedel-Heinen, J., Christensen, C. J. (1999). Reliability-based fatigue design of wind-turbine rotor blades. Engineering Structures, 21(12), 1101–1114. https://doi.org/10.1016/S0141-0296(98)00048-0 
  5. Jiang, Z., Xing, Y., Guo, Y., Moan, T., & Gao, Z. (2014). Long-term contact fatigue analysis of a planetary bearing in a land-based wind turbine drivetrain. Wind Energy, 18, 591–611. http://doi.org/10.1002/we.1713
  6. Burak, Y. Y., Rudavskyi, Y. K., & Sukhorolskyi, M. A. (2007). Analytical mechanics of locally loaded shells. Lviv: Intellect-Zahid.
  7. Rudavskyi, Y. K., Kostrobiy, P. P., Suchorolskyi, M. A., Zashkilnyak, I. M., Kolisnyk, V. M., Mykytyuk, O. A., & Musii, R. S. (2002). Equations of mathematical physics Generalized solutions of boundary value problems. Lviv: Lviv Polytechnic National University.
  8. Teslyuk, T. V., Tsmots, I. G., Teslyuk, V. M., & Medykovskyy, M. O. (2017). Optimization of the structure of a wind power plant using the method of branches and boundaries. Eastern European Journal of Advanced Technologies, 2/8 (86). https://doi.org/10.15587/1729-4061.2017.96769
  9. Medykovskyy, M. O., & Shunevich, O. B. (2010). A multi-criteria method for evaluating the efficiency of a wind power plant. Bulletin of the Engineering Academy of Ukraine, 4, 240–245.
  10. Kravchyshyn, V., Medykovskyy, M., & Melnyk, R. (2016). Modification of Dynamic Programming Method in Determining Active Composition of Wind Power Stations. Computational problems of electrical engineering, 6, 83–90.
  11. Melnyk, R. V. (2021). Information technology for managing energy-dynamic regimes in the presence of renewable energy sources. Lviv: Lviv Polytechnic National University.
  12. Weather Underground provides local & long-range weather forecasts. (2019). https://www.wunderground.com/dashboard/pws/IGMINAPR3/graph/2019-01-2/201...
  13. Weather Underground provides local & long-range weather forecasts. (2019). https://www.wunderground.com/dashboard/pws/IGMINAPR3/graph/2019-07-2/2019-07-22/monthly
  14. Weather Underground provides local & long-range weather forecasts. https://www.wunderground.com/dashboard/pws/IGMINAPR3.
  15. Pivniak, G., Shkrabets, F., Neuberger, N., & Tsyplenkov, D. (2015). Basics of wind energy. National Mining University.
  16. Tang, C., Pathmanathan, M., Soong, W. L., & Ertugrul, N. (2008). Effects of inertia on dynamic performance of wind turbines. Australasian Universities Power Engineering Conference.
  17. Vestas V52/850 – Manufacturers and turbines. https://www.thewindpower.net/turbine_en_27_vestas_v52-850.php
  18. Canadian Solar CS3W-395 HiKu. https://www.canadiansolar.com/wp-content/uploads/2019/12/Canadian_Solar-Datasheet-HiKu_CS3W-P_EN.pdf
  19. Lian-xing, Li, Xin-cun, Tang, Yi, Qu, Hong-tao, Liu. (2011). CC-CV charge protocol based on spherical diffusion model. Journal of Central South University, 18, 319–322. https://doi.org/10.1007/s11771-011-0698-2
  20. Byk, M. V., Frolenkova, S. V., Buket, O. I., & Vasiliev, H. S. (2018). Technical electrochemistry. Part 2. Chemical sources of current. Kyiv: National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.
  21. Shchur, I., & Klymko, V. (2014). Technical and economic substantiation of the parameters of a hybrid wind-solar system for power supply of a separate object. Electromechanical and energy-saving systems, 2, 92–100.
  22. Khiareddine, A., Salah, C. B., & Mimouni, M. F. (2015). Power management of a photovoltaic/battery pumping system in agricultural experiment station. Solar Energy, 112, 319–338. http:// doi.org/10.1016/j.solener.2014.11.020