Стаття присвячена побудові різницевих апроксимацій фрактальних операторів математичної моделі впливу хіміотерапії на стан ракової пухлини на підставі апарату дробового диференціювання з використанням похідної Капуто. Представлено математичну модель стовбурових клітин і хіміотерапії. Побудовано числові алгоритми для реалізації математичних моделей дробового порядку з використанням методу Атангана-Туфіка. Описано UML-діаграму програмного застосунку та процес його розробки.Проведено аналіз впливу фрактальних характеристик (довготривалої пам’яті) хіміотерапії на стан ракової пухлини . Наявність дробового порядку похідної за часом як параметра розв’язків дає важливу інформацію про прогнозування впливу хіміотерапії на стан ракової пухлини.
[1] Medina, M.A. Mathematical modeling of cancer metabolism. Crit. Rev. Oncol./Hematol. 2018, 124, 37–40. https://doi.org/10.1016/j.critrevonc.2018.02.004
[2] Bellomo, N.; Bellouquid, A.; Delitala, M. Mathematical topics on the modeling of multicellular systems in competition between tumor and immune cells. Math. Models Methods Appl. Sci. 2004, 14, 1683–1733. https://doi.org/10.1142/S0218202504003799
[3] Sierociuk, Dominik, et al. "Modelling heat transfer in heterogeneous media using fractional calculus." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371.1990 (2013): 20120146. https://doi.org/10.1098/rsta.2012.0146
[4] Iomin, Alexander. "Superdiffusion of cancer on a comb structure." Journal of Physics: conference series. Vol. 7. No. 1. IOP Publishing, 2005. https://doi.org/10.1088/1742-6596/7/1/005
[5] Alinei-Poiana, T., Dulf, EH. and Кovacs L. Дробове числення в математичній онкології. Sci Rep 13 , 10083 (2023). https://doi.org/10.1038/s41598-023-37196-9
[6] Erturk, V.S.; Zaman, G.; Momani, S. A numeric analytic method for approximating a giving up smoking model containing fractional derivatives. Comput. Math. Appl. 2012, 64, 3068–3074. https://doi.org/10.1016/j.camwa.2012.02.002
[7] Manar A. Alqudah Cancer treatment by stem cells and chemotherapy as a mathematical model with numerical simulations Alexandria Engineering Journal Volume 59, Issue 4, August 2020, Pages 1953-1957 https://doi.org/10.1016/j.aej.2019.12.025
[8] Sweilam, N.H., Al-Mekhlafi, S.M., Assiri, T. et al. Optimal control for cancer treatment mathematical model using Atangana–Baleanu–Caputo fractional derivative. Adv Differ Equ 2020, 334 (2020). https://doi.org/10.1186/s13662-020-02793-9
[9] Abdon Atangana and Dumitru Baleanu. “NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL. Theory and Application to Heat Transfer Model”. Year 2016, Vol.20, No. 2, pp. 763-769. https://doi.org/10.2298/TSCI160111018A
[10] G.F. Webb, A nonlinear cell population model of periodic chemotherapy treatment. Vol. I of Recent Trends in Ordinary Di_erential Equations. Series in Applicable Analysis. World Scienti_c (1992) 569-583. https://doi.org/10.2298/TSCI160111018A
[11] J.C. Panetta and J. Adam, A mathematical model of cycle-speci_c chemotherapy. Math. Comput. Model. 22 (1995) pp. 67-82. https://doi.org/10.1016/0895-7177(95)00112-F
[12] Z. Liu and C. Yang, A mathematical model of cancer treatment by radiotherapy. Comput. Math. Methods Med. 2014 (2014) pp. 172-192. https://doi.org/10.1155/2014/172923
[13] J.C. Panetta, A mathematical model of breast and ovarian cancer treated with Paclitaxel. Math. Biosci. 146 (1997) pp. 89-113 https://doi.org/10.1016/S0025-5564(97)00077-1
[14] P. Unni and P. Seshaiyer, Mathematical modeling, analysis, and simulation of tumor dynamics with drug interventions. Comput. Math. Methods Med. 2019 (2019) 407-429 https://doi.org/10.1155/2019/4079298
[15] H.N. Weerasinghe, P.M. Burrage, K. Burrage and D.V. Nicolau Jr., Mathematical models of cancer cell plasticity. J. Oncol. 2019 (2019) 240-253 https://doi.org/10.1155/2019/2403483
[16] E. Ucar, N.Ozdemir and E. Altun, Fractional order model of immune cells inuenced by cancer cells. MMNP 14 (2019) 308.-321 https://doi.org/10.1051/mmnp/2019002
[17] D. Dingli, M.D. Cascino, K. Josic, S.J. Russell and Z. Bajzer, Mathematical modeling of cancer radiovirotherapy. Math Biosci. 199 (2006) 55-78. https://doi.org/10.1016/j.mbs.2005.11.001
[18] A. Yin, D.J.A.R. Moes, J.G.C. van Hasselt, J.J. Swen and H.J. Guchelaar, A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors. CPT Pharmacometrics Syst. Pharmacol. 8 (2019) 720-737. https://doi.org/10.1002/psp4.12450
[19] S. Wang and H. Schattler, Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Math. BioSciences 13 (2016) 1223-1240. https://doi.org/10.3934/mbe.2016040
[20] O.G. Isaeva and V.A. Osipov, Di_erent strategies for cancer treatment: mathematical modeling. Comput. Math. Methods Med. 10 (2009) 453-472. https://doi.org/10.1080/17486700802536054