ДОСЛІДЖЕННЯ ВПЛИВУ УМОВ ОДЕРЖАННЯ НАНОКОМПОЗИТІВ ПА6/ММТ НА ЇХ ТЕРМІЧНІ ВЛАСТИВОСТІ

1
Національний університет “Львівська політехніка”
2
Національний університет “Львівська політехніка”
3
Національний університет “Львівська політехніка”
4
Технічний університет Кошице
5
Національний університет “Львівська політехніка”

В роботі досліджено вплив додаткового термічного і термомеханічного оброблення нанокомпозитів ПА6/ММТ, одержаних з форміатного розчину, на їх термостійкість та технологічні властивості. Термічним аналізом встановлено, що нагрівання нанокомпозиту до температури 250 °С та оброблення його на капілярному пластометрі ИИРТ за температури 230 °С підвищують ступінь кристалічності та термостійкість зразків. Показано, що додатково оброблені нанокомпозити мають також нижчу текучість та значно вищі значення температури розм'якшення.

1.                  Krishna, S., & Patel, C. M. (2020). Computational and experimental study of mechanical properties of Nylon 6 nanocomposites reinforced with nanomilled cellulose. Mechanics of Materials, 143, 103318. https://doi.org/10.1016/j.mechmat.2020.103318

2.                  Ma, Y., Jin, S., Yokozeki, T., Ueda, M., Yang, Y., Elbadry, E. A., Hamada, H., & Sugahara, T. (2020). Effect of hot water on the mechanical performance of unidirectional carbon fiber-reinforced nylon 6 composites. Composites Science and Technology, 200, 108426. https://doi.org/10.1016/j.compscitech.2020.108426

3.                  Hagihara, H., Watanabe, R., Shimada, T., Funabashi, M., Kunioka, M., & Sato, H. (2018). Degradation mechanism of carbon fiber-reinforced thermoplastics exposed to hot steam studied by chemical and structural analyses of nylon 6 matrix. Composites Part A: Applied Science and Manufacturing, 112, 126–133. https://doi.org/10.1016/j.compositesa.2018.05.034

4.                  Yañez-Macias, R., Hernandez-Hernandez, E., Gallardo-Vega, C. A., Ledezma-Rodríguez, R., Ziolo, R. F., Mendoza-Tolentino, Y., Fernández-Tavizon, S., Avila-Orta, C. A., Garcia-Hernandez, Z., & Gonzalez-Morones, P. (2019). Covalent grafting of unfunctionalized pristine MWCNT with nylon-6 by microwave assist in-situ polymerization. Polymer, 185, 121946. https://doi.org/10.1016/j.polymer.2019.121946

5.                  El Achaby, M., Ennajih, H., Arrakhiz, F. Z., El Kadib, A., Bouhfid, R., Essassi, E., & Qaiss, A. (2013). Modification of montmorillonite by novel geminal benzimidazolium surfactant and its use for the preparation of Polymer Organoclay nanocomposites. Composites Part B: Engineering, 51, 310–317. https://doi.org/10.1016/j.compositesb.2013.03.009

6.                  Alves, J. L., Rosa, P. de, & Morales, A. R. (2017). Evaluation of organic modification of montmorillonite with Ionic and nonionic surfactants. Applied Clay Science, 150, 23–33. https://doi.org/10.1016/j.clay.2017.09.001

7.                  Rajeesh, K. R., Gnanamoorthy, R., & Velmurugan, R. (2010). Effect of humidity on the indentation hardness and flexural fatigue behavior of polyamide 6 nanocomposite. Materials Science and Engineering: A, 527(12), 2826–2830. https://doi.org/10.1016/j.msea.2010.01.070

8.                  Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Mechanical properties of Nylon 6-Clay Hybrid. Journal of Materials Research, 8(5), 1185–1189. https://doi.org/10.1557/jmr.1993.1185

9.                  Chen, H.-B., & Schiraldi, D. A. (2018). Flammability of polymer/clay aerogel composites: An overview. Polymer Reviews, 59(1), 1–24. https://doi.org/10.1080/15583724.2018.1450756

10.              Bilotti, E., Zhang, R., Deng, H., Quero, F., Fischer, H. R., & Peijs, T. (2009). Sepiolite needle-like clay for PA6 nanocomposites: An alternative to layered silicates? Composites Science and Technology, 69(15-16), 2587–2595. https://doi.org/10.1016/j.compscitech.2009.07.016

11.              Fornes, T. D., Hunter, D. L., & Paul, D. R. (2004). Effect of sodium montmorillonite source on nylon 6/clay nanocomposites. Polymer, 45(7), 2321–2331. https://doi.org/10.1016/j.polymer.2004.01.061

12.              Dasari, A., Yu, Z., Mai, Y., Hu, G., & Varlet, J. (2005). Clay exfoliation and organic modification on wear of Nylon 6 nanocomposites processed by different routes. Composites Science and Technology, 65(15-16), 2314–2328. https://doi.org/10.1016/j.compscitech.2005.06.017

13.              McAdam, C., Hudson, N., Liggat, J., & Pethrick, R. (2008). Synthesis and characterization of nylon 6/clay nanocomposites prepared by ultrasonication and in situ polymerization. Journal of Applied Polymer Science108(4), 2242-2251. doi: 10.1002/app.25599

14.              Seltzer, R., Mai, Y., & Frontini, P. (2012). Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending. Composites Part B: Engineering43(1), 83-89. doi: 10.1016/j.compositesb.2011.04.035

15.              Krasinskyi, V. V., Suberlyak, O. V., Zemke, V. M., Chekailo, M. V., & Pankiv, M. O. (2021). Obtaining of nanocomposites based on montmorillonite and Polyamide in solution. Chemistry, Technology and Application of Substances, 4(1), 172–178. https://doi.org/10.23939/ctas2021.01.172

16.              Krasinskyi, V., Kochubei, V., Klym, Y., & Suberlyak, O. (2017). Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies4(12 (88), 44-50. doi: 10.15587/1729-4061.2017.108465

17.              Krasinskyi, V., Suberlyak, O., Dulebová, Ľ., & Antoniuk, V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials756, 3-10. doi: 10.4028/www.scientific.net/kem.756.3