HYDRODYNAMICS OF FILTRATION DRYING OF WILD CARROT POMACE

EP.
2025;
: сс. 79-87
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Національний університет “Львівська політехніка”
4
University of Zagreb Faculty of Mechanical Engineering and Naval Architecture

The paper presents the results of a study on the hydrodynamics of the stationary layer of wild carrot pomace during filtration drying, as a raw material for the production of ecological alternative solid fuel. The main geometric parameters of individual wild carrot pomace particles and the physicomechanical properties of the stationary layer were determined experimentally. A diagram of the experimental setup is provided. The results of the experimental studies are presented in the form of functional dependencies of pressure loss ∆P = f(ʋ0) and Euler’s criterion as a function of Reynolds number and the geometric simplex Eu = f(Re, G). The feasibility of pre-treatment of wild carrot pomace for alternative biofuel production is justified. The obtained results allow for predicting energy consumption when developing equipment for the filtration drying of this material.

1. Atamanyuk, V. M., & Humnytskyi, Ya. M. (2013). Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Vydavnytstvo Natsionalnoho universytetu "Lvivska politekhnika", Lviv.

2. Atamanyuk, V., Gnativ, Z., Kindzera, D., Janabayev, D., & Khusanov, A. (2020). Hydrodynamics of cotton filtration drying. Chemistry & Chemical Technology, 14(3), 426–432. doi: https://doi.org/10.23939/chcht14.03

https://doi.org/10.23939/chcht14.03

3. Atamanyuk, V., Huzova, I., & Gnativ, Z. (2018). Intensification of drying process during activated carbon regeneration. Chemistry & Chemical Technology, 12(2), 263–271. doi: https://doi.org/10.23939/chcht12.02.263

https://doi.org/10.23939/chcht12.02.263

4. Boadi, N. O., Badu, M., Kortei, N. K., Saah, S. A., Annor, B., Mensah, M. B., & Fiebor, A. (2021). Nutritional composition and antioxidant properties of three varieties of carrot (Daucus carota). Scientific African, 12, e00801. doi: https://doi.org/10.1016/j.sciaf.2021.e00801

https://doi.org/10.1016/j.sciaf.2021.e00801

5. Guibunda, F. A., Waita, S., Nyongesa, F. W., Snyder, G. J., & Chaciga, J. (2024). Optimizing biomass briquette drying: A computational fluid dynamics approach with a case study in Mozambique. Energy, 360, 100012. doi: https://doi.org/10.1016/j.energ.2024.100012

https://doi.org/10.1016/j.energ.2024.100012

6. Ismail, J., Shebaby, W. N., Daher, J., Boulos, J. C., Taleb, R., Daher, C. F., & Mroueh, M. (2024). The wild carrot (Daucus carota): A phytochemical and pharmacological review. Plants, 13(1), 93. doi: https://doi.org/10.3390/plants13010093

https://doi.org/10.3390/plants13010093

4. Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kiiaieva, S. S., Zherebetskyi, R. R., & Sobechko, I. B. (2022). Preparation of an alternate solid fuel from alcohol distillery stillage. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 54–59. doi: https://doi.org/10.32434/0321-4095-2022-140-1-54-59

https://doi.org/10.32434/0321-4095-2022-140-1-54-59

5. Ivashchuk, O., Atamanyuk, V., Chyzhovych, R., Bacho, S., & Boldyryev, S. (2024). Investigation of the efficiency of a beet pulp filtration drying process. Journal of Environmental Problems, 9(4), 268–274. doi: https://doi.org/10.23939/ep2024.04.268

https://doi.org/10.23939/ep2024.04.268

6. Ivashchuk, O., Atamanyuk, V., Chyzhovych, R., Manastyrska, V. A., Barabakh, S. A., & Hnativ, Z. (2024). Kinetic regularities of the filtration drying of barley brewer’s spent grain. Chemistry & Chemical Technology, 18(1), 66. doi: https://doi.org/10.23939/chcht18.01.066

https://doi.org/10.23939/chcht18.01.066

7. Ivashchuk, O., Chyzhovych, R., & Atamanyuk, V. (2024). Simulation of the thermal agent movement hydrodynamics through the stationary layer of the alcohol distillery stillage. Case Studies in Chemical and Environmental Engineering, 9, 100566. doi: https://doi.org/10.1016/j.cscee.2023.100566

https://doi.org/10.1016/j.cscee.2023.100566

8. Kindzera, D. P., Atamanyuk, V. M., Helesh, A. B., & Tsiura, N. Y. (2024). Hydrodynamic and kinetic patterns of yellow iron oxide pigment filtration drying. Chemistry, Technology and Application of Substances, 7(1). doi: https://doi.org/10.23939/ctas2024.01.188

https://doi.org/10.23939/ctas2024.01.188

9. Kindzera, D., Hosovskyi, R., Atamanyuk, V., & Symak, D. (2021). Heat transfer process during filtration drying of grinded sunflower biomass. Chemistry & Chemical Technology, 15(1), 118. doi: https://doi.org/10.23939/chcht15.01.118

https://doi.org/10.23939/chcht15.01.118

10. Kobeyeva, Z., Khussanov, A., Atamanyuk, V., Hnativ, Z., Kaldybayeva, B., Janabayev, D., & Gnylianska, L. (2022). Analyzing the kinetics in the filtration drying of crushed cotton stalks. Eastern-European Journal of Enterprise Technologies, 1(8(115)), 55–66. doi: https://doi.org/10.15587/1729-4061.2022.252352

https://doi.org/10.15587/1729-4061.2022.252352

11. Kumar Sarangi, P., Subudhi, S., & Bhatia, L. (2023). Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environmental Science and Pollution Research, 30, 8526–8539. doi: https://doi.org/10.1007/s11356-022-20669-1

https://doi.org/10.1007/s11356-022-20669-1

12. Srivastava, R. K., Shetti, N. P., Reddy, K. R., Kwon, E. E., Nadagouda, M. N., & Aminabhavi, T. M. (2021). Biomass utilization and production of biofuels from carbon-neutral materials. Environmental Pollution, 276, 116731. doi: https://doi.org/10.1016/j.envpol.2021.116731

https://doi.org/10.1016/j.envpol.2021.116731

13. Stanojević, K., Milenković, A., Pavlović, D., Matejić, J., Gajić, I., Dinić, A., & Stanojević, L. (2023). Anti-inflammatory activity of wild carrot (Daucus carota L.) umbels ethanolic extracts from Serbia and Greece. Archives of Pharmacy, 73(Suppl. 4), S71–S72. doi: https://doi.org/10.1016/j.envpol.2021.116731

https://doi.org/10.1016/j.envpol.2021.116731

14. Zhou, C., Fan, X., Duan, C., & Zhao, Y. (2019). A method to improve fluidization quality in gas–solid fluidized bed for fine coal beneficiation. Particuology, 43, 181–192. doi: https://doi.org/10.1016/j.partic.2017.12.012

https://doi.org/10.1016/j.partic.2017.12.012