OPTIMUM COLLECTION AND CONCENTRATION STRATEGIES OF HYDROBIONTS EXCESS BIOMASS IN BIOLOGICAL SURFACE WATER PURIFYING TECHNOLOGIES

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National Universit
5
Lviv Polytechnic National University
6
Ukrainian National Forestry University, Institute of Ecological Economics and Management
7
Lviv State University of Life Safety
8
Lviv Polytechnic National University

The analysis of perspective collection and concentration technologies of excess biomass in the technologies of wastewater and surface water biological treatment with the use of aquatic organisms has been carried out. The scheme of a life cycle of the aquatic organisms in wastewater and surface water treatment technologies has been proposed. The analysis of technological approaches for biomass collection of three types: aquatic plants and macroalgae; aquatic plants with a developed root system and microalgae of aquatic organisms has been carried out. A strategy for concentrating microalgae has been proposed. The high efficiency of the coagulation-flocculation gravitational thickening method of freshwater microalgae suspensions of the Microcystis aeruginosa species has been confirmed in laboratory conditions.

1. Bigaj, I. M., Brzozowska, R., Łopata, M., Wiśniewski, G., Dunalska, J. A., Szymański D., & Zieliński, R. A. (2013). Comparison of coagulation behaviour and floc characteristics of polyaluminium chloride (PAX 18, PAX XL19H, ALCAT) with surface water treatment. Limnological Review, 13 (2), 73−78.

https://doi.org/10.2478/limre-2013-0008

2. Brix, H. (1993). Macrophytes - mediated oxygen transfer in wetlands: Transport mechanism and rates. In G. A. Moshiri (Ed.), Constructed wetlands for water quality improvement. Ann Arbor, London: Lewis, Chapter 41, 391-398.

https://doi.org/10.1201/9781003069997-48

3. Cleaning of reservoirs from algae and cane. (2020). Retrieved from https://dredgers.com.ua/en/kamish1-2/

4. Dogaris, Ioannis, Ammar, Ehab, & Philippidis, George P. (2020). Prospects of integrating algae technologies into landfill leachate treatment. World Journal of Microbiology and Biotechnology, (36:39), 25. doi: https://doi.org/10.1007/s11274-020-2810-y

https://doi.org/10.1007/s11274-020-2810-y

5. Dzhamalova, G. A. (2015). Matematicheskoe planirovanie emissii biogaza i filtrata v protsesse intensivnogo anaerobnogo razlozheniya tverdyih byitovyih othodov v bioreaktore. Sovremennyie problemyi nauki i obrazovaniya, (2-2), 44-50.

6. Flyurik, E., Abramovich, O., & Zmitrovich, A. (2014). Ispolzovanie Eichornia crassipes dlya ochistki stochnyih vod i polucheniya kormovoy dobavki. Trudyi BGTU, (4), 155-160.

7. Gajewska, M., Tuszyńska, A., & Obarska-Pempkowiak, H. (2004). Influence of configuration of the beds on contaminations removal in hybrid constructed wetlands. Pol. J. Environ. Stud., (13), 149–153.

8. Govahi, S., Karimi-Jashni, A., & Derakhshan, M. (2012) Treatability of landfill leachate by combined upflow anaerobic sludge blanket reactor and aerated lagoon. International Journal of Environmental Science and Technology, (9), 145–151. doi: https://doi.org/10.1007/s13762-011-0021-7.

https://doi.org/10.1007/s13762-011-0021-7

9. Granados, M. R., Acién, F. G., Gómez, C., Fernández-Sevilla, J. M., & Grima, M. E. (2012). Evaluation of flocculants for the recovery of freshwater microalgae. Bioresource Technology, (118), 102–110.

https://doi.org/10.1016/j.biortech.2012.05.018

10. Jóźwiakowski, K., Gajewska, M., Marzec, M., Gizińska-Górna, M., Pytka, A., Kowalczyk – Juśko, A., Sosnowska, B., Baran, S., Malik, A., & Kufel, R. (2016). Hybrid constructed wetlands for the National Parks – a case study, requirements, dimensioning, preliminary results. In: Vymazal, J. (Ed.), Natural and Constructed Wetlands. Nutrients, Heavy Metals and Energy Cycling, and Flow. Springer International Publishing, Switzerland, 247–265.

https://doi.org/10.1007/978-3-319-38927-1_18

11. Jozwiakowski, K., Bugajski, P., Kurek, K., Caceres, R., Siwiec, T., Jucherski A., Czekała, W., & Kozłowski, K.(2020). Technological reliability of pollutant removal in different seasons in one-stage constructed wetland system with horizontal flow operating in the moderate climate. Separation and Purification Technology, (238), 1-23. doi: https://doi.org/10.1016/j.seppur.2019.116439

https://doi.org/10.1016/j.seppur.2019.116439 

12. Lapan, O., Mikhyeyev, O., Madzhd, S., Dmytrukha, T., Cherniak, L., & Petrusenko, V. (2019).Water Purification from Ions of Cadmium (II) Using a Bio-Plateau. Journal of Ecological Engineering, 20(11), 29–34.  doi: https://doi.org/10.12911/22998993/113412

https://doi.org/10.12911/22998993/113412 

13. Malovanyy, M., Nykyforov, V., Kharlamova, О., Synelnikov, О., & Dereyko, Kh. (2016,а). Reduction of the environmental threat from uncontrolled development of cyanobacteria in waters of Dnipro reservoirs. Environmental Problems, 1(1), 61-64.

14. Malovanyy, M., Nikiforov, V., Kharlamova, O., & Synelnikov, O.  (2016,b). Production of renewable energy resources via complex treatment of cyanobacteria biomass. Chemistry and Chemical Technology, 10(2), 251–254. doi:  https://doi.org/10.23939/chcht10.02.25

https://doi.org/10.23939/chcht10.02.251

15. Malovanyy, M., Zhuk, V., Nykyforov, V., Bordun, I., Balandiukh, Ju., & Leskiv, G. (2019). Experimental investigation of Microcystis aeruginosa cyanobacteria thickening to obtain a biomass for the energy production. Journal of water and land development, 43 (X–XII), 113–119. doi: https://doi.org/10.2478/jwld-2019-0069

https://doi.org/10.2478/jwld-2019-0069

16. Marzec, M., Józwiakowski, K., Debska, A., Gizinska-Górna, M., Pytka-Woszczyło, A., Kowalczyk-Jusko, A., & Listosz, A. (2018). The Efficiency and Reliability of Pollutant Removal in a Hybrid Constructed Wetland with Common Reed, Manna Grass, and Virginia Mallow. Water, (10), 1445. doi: https://doi.org/10.3390/w10101445

https://doi.org/10.3390/w10101445 

17. Masi, F., & Martinuzzi, N. (2007). Constructed wetlands for the Mediterranean countries: hybrid systems for water reuse and sustainable sanitation. Desalination, 215 (1-3), 44–55. doi: https://doi.org/10.1016/j.desal.2006.11.014

https://doi.org/10.1016/j.desal.2006.11.014

18. Nykyforov, V., Malovanyy, M., Kozlovska, T., Novokhatko, O., & Digtiar, S. (2016). The biotechnological ways of blue-green algae complex processing. Eastern-European Journal of Enterprise Technologies, 5(10), 11-18. doi: https://doi.org/10.15587/1729-4061.2016.79789

https://doi.org/10.15587/1729-4061.2016.79789

19. Payandeh, P. E., Naser, M., & Parisa, D. (2017). Study of Biological Methods in Landfill Leachate Treatment. Open Journal of Ecology, (7), 568-580. doi: https://doi.org/10.4236/oje.2017.79038

https://doi.org/10.4236/oje.2017.79038

20. Rai, U. N., Tripathi, R. D., Singh, N. K., Upadhyay, A. K., Dwivedi, S., Shukla, M. K., Mallick, S., Singh, S. N., & Nautiyal, C. S. (2013). Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river. Bioresour. Technol., (148), 535–541. doi: https://doi.org/10.1016/j.biortech.2013.09.005

https://doi.org/10.1016/j.biortech.2013.09.005 

21. Sardi Saavedra, A., Madera Parra, C, Peсa, E. J., Cerуn, V. A, & Mosquera, J. (2018). Grupos funcionales fitoplanctуnicos en una laguna algal de alta tasa usada para la biorremediaciуn de lixiviados de rellenos sanitarios. Acta Biolуg Colombiana, (23), 295–303. doi: https://doi.org/10.15446/abc.v23n3.69537

https://doi.org/10.15446/abc.v23n3.69537

22. Sniffen, K. D., Sales, C. M., & Olson, M. S. (2015). Nitrogen removal from raw landfill leachate by an algae–bacteria consortium. Water Sci Technol., (73), 479–485. doi: https://doi.org/10.2166/wst.2015.499

https://doi.org/10.2166/wst.2015.499 

23. Soloviy, C., & Malovanyy, M. (2019). Freshwater ecosystem macrophytes and microphytes: development, environmental problems, usage as raw material. Review. Environmental Problems, 4(3), 115-124. doi:  https://doi.org/ 10.23939/ep2019.03.115

https://doi.org/10.23939/ep2019.03.115

24. Villamagna, A. M., Murphy, B. R. (2010). Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology, (55), 282–298. doi: https://doi.org/ 10.1111/j.1365-2427.2009.02294.x

https://doi.org/10.1111/j.1365-2427.2009.02294.x 

25. Zahirniak, M. V., et al. (2017). Ekolohichna biotekhnolohiia pererobky syno-zelenykh vodorostei. Kremenchuk: PP Shcherbatykh O. V. [in Ukrainian]