WAYS TO IMPROVE THE EFFICIENCY OF WASTEWATER TREATMENT OF A CARDBOARD AND PAPER MILL

EP.
2023;
: сс.210-216
1
Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»
2
National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
3
Gdansk University of Technology

The results of research on physical and chemical methods for the preliminary treatment of wastewater of a cardboard and paper factory in Khmelnytskyi region of Ukraine are presented. At the cardboard and paper factory, wastewater is treated at a sewage treatment plant, which includes sand traps, primary radial sedimentation tanks, aeration tanks with activated sludge regenerators, secondary radial sedimentation tanks, and bioponds. The use of coagulation and chlorination methods before biological treatment in aeration tanks was proposed. Alumoflock 18% was used as a coagulant, polyacrylamide was used as a flocculant, and sodium hydroxide was used as an alkalizing reagent. The study was conducted on a mixture of industrial and domestic wastewater with COD and BOD5 – 3200 and 1575 mg/dm3, respectively, and on industrial wastewater with COD and BOD5 – 4480 and 1960 mg/dm3, respectively. The effects of reducing COD and BOD5 indicators in the first case after coagulation were 30 and 40%, after chlorination - 37.81 and 43.17%, respectively, in the second after coagulation - 28.57 and 47.24%, respectively. It was established that a significant proportion of organic substances according to the COD indicator is in a dissolved state - 60-70%. It has been proven that as a result of chlorination, the maximum reduction of "pure" COD is achieved, therefore, the possibility and expediency of chlorination of water after the secondary settling tank with increased doses should be considered in the wastewater treatment technology of the cardboard and paper factory.

1. Ashrafi, O., Yerushalmi, L., & Haghighat, F. (2015). Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission. Journal of Environmental Management, 158, 146-157. doi: https://doi.org/10.1016/j.jenvman.2015.05.010

https://doi.org/10.1016/j.jenvman.2015.05.010

2. Birjandi, N., Younesi, H., & Bahramifar, N. (2016) Treatment of wastewater effluents from paper-recycling plants by coagulation process and optimization of treatment conditions with response surface methodology. Applied Water Science, 6, 339-348.

https://doi.org/10.1007/s13201-014-0231-5

3. Cabrera, M., & Ahmad, Z. (2017). Biological Wastewater Treatment and Resource Recovery. Pulp Mill Wastewater: Characteristics and Treatment. In Z. Ahmad (Ed.), Biological Wastewater Treatment and Resource Recovery (Chapter 7). doi: https://doi.org/ 10.5772/62795

https://doi.org/10.5772/67537

4. Curtis, W. (2010). Updating a model of pulp and paper wastewater treatment in a partial-mix aerated stabilization basin system. Water Science and Technology, 62(6), 1248-1255. doi: https://doi.org/10.2166/wst.2010.934

https://doi.org/10.2166/wst.2010.934

5. Dubeski, C. V., & Branion, R. (2001). Biological treatment of pulp mill wastewater using sequencing batch reactors. Journal of Environmental Science and Health, 36, 1245-1255. doi: https://doi.org/10.1081/ESE-100104875

https://doi.org/10.1081/ESE-100104875

6. Eskelinen, K., Särkkä, H., Kurniawan, T. A., & Sillanpää, M. (2010). Removal of recalcitrant contaminants from bleaching effluents in pulp and paper mills using ultrasonic irradiation and Fenton-like oxidation, electrochemical treatment, and/or chemical precipitation: A comparative study. Desalination, 255(1-3), 179-187. doi: https://doi.org/10.1016/j.desal.2009.12.024

https://doi.org/10.1016/j.desal.2009.12.024

7. Habets, L., & Driessen, W. (2007). Anaerobic treatment of pulp and paper mill effluents – status quo and new developments. Water Science and Technology, 55(6), 223-230. doi: http://dx.doi.org/10.2166/wst.2007.232

https://doi.org/10.2166/wst.2007.232

8. Harif, S., Aboulhassan, M. A., & Bammou, L. (2021). Overview of wastewater characteristics of the cardboard industry. Scientific Study and Research: Chemistry and Chemical Engineering, 22, 1-11. Retrieved from https://pubs.ub.ro/dwnl.php?id=CSCC6202101V01S01A0001

9. Hubbe, M. A., Metts, J. R., Hermosilla, D., Blanco, M. A., Yerushalmi, L., Haghighat, F., & Elliott, A. (2016). Wastewater treatment and reclamation: A review of pulp and paper industry practices and opportunities. BioResources, 11(3), 7953-8091. doi: http://dx.doi.org/10.15376/biores.11.3.Hubbe

https://doi.org/10.15376/biores.11.3.Hubbe

10. Naoyuki, K., Takahiro, N., Hirokazu, O., & Hiroshi, M. (2010). Treatment of Paper and Pulp Mill Wastewater by Ozonation Combined with Electrolysis. Journal of Water and Environment Technology, 8(2), 99-109. doi: http://dx.doi.org/10.2965/jwet.2010.99

https://doi.org/10.2965/jwet.2010.99

11. Ram, C., Rani, P., & Gebru (2020). Pulp and paper industry wastewater treatment: use of microbes and their enzymes. Physical Sciences Reviews, 5, 8-10. doi: https://doi.org/10.1515/psr-2019-0050

https://doi.org/10.1515/psr-2019-0050

12. Ramosa, S., T. Poznyak, I. Chairez, & I. Córdova (2009). Remediation of lignin and its derivatives from pulp and paper industry wastewater by the combination of chemical precipitation and ozonation. Journal of Hazardous Materials, 169(1-3), 428-434. doi: https://doi.org/10.1016/j.jhazmat.2009.03.152

https://doi.org/10.1016/j.jhazmat.2009.03.152

13. Schnell, A., Hodson, P. V., Steel, P., Melcer, H., & Carey, J. H. (2000). Enhanced biological treatment of bleached kraft mill effluents – II. Reduction of mixed function oxygenase (MFO) induction in fish. Water Research, 34(2), 501-509. doi: https://doi.org/10.1016/S0043-1354(99)00161-X

https://doi.org/10.1016/S0043-1354(99)00161-X

14. Shaveta, K., Anju, M., & Sanjeev, G. (2018). Treatment of pulp and paper mill effluent using low-cost adsorbents: An overview. Journal of Applied and Natural Science, 10(2), 695-704. doi: http://dx.doi.org/10.31018/jans.v10i2.1769

https://doi.org/10.31018/jans.v10i2.1769

15. Singh, P., & Srivastava, A. (2014). Enzymatic color removal of pulp and paper mill effluent by different fungal strains. International Journal of Pharmaceutical and Biological Sciences, 5(3), 773-783.

16. Tielbaard, M., Wilson, T., Feldbaumer, E., & Driessen, W. (2002). Full-scale anaerobic treatment experiences with pulp mill evaporator condensates. In Proceedings of the TAPPI Environmental Conference. TAPPI Press, Atlanta, 621-634.