Хімічна, спектральна і морфологічна характеристика мембранно-очищених гумінових кислот, екстрагованих з лігніту

2020;
: сс. 353 - 361
1
Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran
2
Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran
3
Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran
4
Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran

З використанням реактора періодичної дії з перемішуванням одержані гумінові речовини з лігніту вугільних родовищ Заранда (Керман, Іран). Для очищення гумінових кислот (ГК) від лужних екстрактів, отриманих з реактора, застосовано систему мембранної ультрафільтрації. За допомогою гравіметричного, елементного аналізів, а також УФ-спектроскопії, Фур‘є-спектроскопії, спектроскопії з індуктивно-зв‘язаною плазмою (СІЗП) та скануючої електронної мікроскопії досліджено характеристики очищених ГК. Гравіметричним аналізом встановлено, що чистота очищеної ГК була більше 95 %. Результатами УФ-спектроскопії доведено, що очищена ГК має більш високу молекулярну масу, ароматичність і ступінь гуміфікації порівняно з промисловою ГК. За допомогою Фур‘є-спектроскопії показано, що ГК має ароматичну структуру. Дуже низькі концентрації важких металів та забруднень неорганічного походження, визначені за допомогою СІЗП, показали належну ефективність мембранного очищення ГК. Одержані результати демонструють прийнятні характеристики очищеної ГК з лігніту для сільськогосподарського та промислового застосування.

  1. Canellas L., Oliveras F., Aguiar N. et al.: Sci. Hortic., 2015, 196, 15. https://doi.org/10.1016/j.scienta.2015.09.013
  2. Savel’eva A., Mal’tseva E.,Yudina N.: Solid Fuel Chem., 2017, 51, 51. https://doi.org/10.3103/S0361521917010098
  3. De Melo B., Motta F., Santana M.: Mat. Sci. Eng. C, 2016, 62, 967. https://doi.org/10.1016/j.msec.2015.12.001
  4. Enev V., Pospisilova L., Klucakova M. et al.: Soil Water Res., 2014, 9, 9. https://doi.org/10.17221/39/2013-SWR
  5. Pena-Mendez E., Havel J., Patocka J.: J. Appl. Biomed., 2005, 3, 13. https://doi.org/10.32725/jab.2005.002
  6. Giannouli A., Kalaitzidis S., Siavalas G. et al.: Int. J. Coal Geol., 2009, 77, 383. https://doi.org/10.1016/j.coal.2008.07.008
  7. Peuravuori J., Zbankova P., Pihlaja K.: Fuel Process. Technol., 2006, 87, 829. https://doi.org/10.1016/j.fuproc.2006.05.003
  8. Das T., Saikia B., Bourah B., Das D.: J. Geol. Soc. India, 2015, 86, 468. https://doi.org/10.1007/s12594-015-0334-0
  9. Giovanela M., Crespo J., Antunes M. et al.: J. Mol. Struct., 2010, 981, 111. https://doi.org/10.1016/j.molstruc.2010.07.038
  10. Martins J., Xavier D., Silva A. et al.: Int. J. Agric. Sci., 2012, 4, 238. https://doi.org/10.9735/0975-3710.4.5.238-242
  11. Zara M., Ahmad Z., Akhtar J. et al.: Energ. Source A., 2017, 39, 1159. https://doi.org/10.1080/15567036.2017.1307886
  12. Kurkova M., Klika Z., Klikova C., Havel J.: Chemosphere, 2004, 54, 1237. https://doi.org/10.1016/j.chemosphere.2003.10.020
  13. Moosavi Rad S.: Geochemical Studies of Pabedana Coal Mine Tailings, South East of Iran and Their Effect on Environment Using GIS Techniques. Ph.D. thesis, University of Mysore, Manasagangotri, India, 2010.
  14. Ozkan S., Ozkan S.: Int. J. Coal Prep. Util., 2016, 37, 285. https://doi.org/10.1080/19392699.2016.1171761
  15. Canieren O., Karaguzel C., Aydin A.: Physicochem. Probl. Miner. Process., 2017, 53, 502. https://doi.org/10.5277/ppmp170139
  16. Saito B., Seckler M.: Braz. J. Chem. Eng., 2014, 31, 675. https://doi.org/10.1590/0104-6632.20140313s00002512
  17. Pospisilova L., Fasurova N., Barancikova G., Liptaj T.: Petrol. Coal, 2008, 50, 30.
  18. Pospisilova L., Fasurova N.: Soil Water Res., 2011, 6, 147. https://doi.org/10.17221/21/2010-SWR
  19. Pospisilova L., Fasurova N.: J. Cent. Europ. Agr., 2010, 11, 351. https://doi.org/10.5513/jcea.v11i3.842
  20. Georgakopoulos A., Iordanidis A., Kapina V.: Energ. Source., 2003, 25, 995.
  21. http://www.humicsubstances.org/
  22. Lamar R., Talbot K.: Commun. Soil Sci. Plan., 2009, 40, 2309. https://doi.org/10.1080/00103620903111251
  23. Lamar R., Olk D., Mayhew L., Bloom P.: J. AOAC Int., 2014, 97, 721. https://doi.org/10.5740/jaoacint.13-393
  24. Shakiba N.: Investigation of the effective parameters on separation and purification of humic acid from the Leonardite humate using a proper filter. M.Sc. thesis, University of Tehran, Iran, 2016.
  25. Prosyolkov N., Glukhovtsev V., Kapkin N. et al.: Pat. RU 2473527, Publ. Jan. 27, 2013.
  26. Dick D., Mangrichb A., Menezesc S., Pereira B.: J. Brazil. Chem. Soc., 2002, 13, 177. https://doi.org/10.1590/S0103-50532002000200008
  27. Fong S., Lau I., Chong W. et al.: J. Brazil. Chem. Soc., 2006, 17, 582. https://doi.org/10.1590/S0103-50532006000300023
  28. Das T., Saikia B., Baruah B.: J. Indian Chem. Soc., 2013, 90, 2007.
  29. Saikia B., Baruah R., Gogoi P.: J. Earth Syst. Sci., 2007, 116, 575. https://doi.org/10.1007/s12040-007-0052-0
  30. Saikia B., Sahu O., Boruah R.: J. Geol. Soc. India, 2007, 70, 917.
  31. Olivella M., Sole M., Gorchs R. et al.: Arch. Min. Sci., 2011, 56, 789.
  32. Ketris M., Yudovich Y.: Int. J. Coal Geol., 2009, 78, 135. https://doi.org/10.1016/j.coal.2009.01.002
  33. Novak J., Kozler J., Janoš P.: React. Funct. Polym., 2001, 47, 101. https://doi.org/10.1016/S1381-5148(00)00076-6
  34.  https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31986L0278