Адсорбція важкого металу на активованому вугіллі, отриманому з агровідходів кокосового листя

2020;
: сс. 553 - 562
1
Department of Chemical Engineering, Birla Institute of Technology
2
Department of Chemical Engineering, Birla Institute of Technology
3
National Chemical Laboratory
4
National Chemical Laboratory

Повільним піролізом за 673 К в інертній атмосфері одержано активоване вугілля з кокосового листя. Стехіометричне співвідношення приготовлених зразків становило 1:1 (CL1), 2:1 (CL2) і 3:1 (CL3). Коефіцієнт 3:1 визначено найкращим для подальших досліджень. За методом БЕТ встановлено, що площа поверхні активованого вугілля CL3 1060,57 м2/г є більшою у порівнянні з вугіллям CL1 і CL2. Адсорбційні дослідження проводились за концентрації речовин (2,5–122,8 мг/л) і температури розчину 313–343 К. Проведено дослідження ізотерм Ленгмюра, Фрейндліха і Темкіна. Експериментальні дані дуже добре узгоджуються з рівняннями псевдо-першого та псевдо-другого порядку. Показано, що активоване вугілля CL3 можливо використовувати як сорбент для видалення свинцю з стічних вод.

  1. Bhattacharya A., Venkobachar C.: J. Environ. Eng., 1984, 110, 110. https://doi.org/10.1061/(ASCE)0733-9372(1984)110:1(110)
  2. Xu T., Liu X.: Chinese J. Chem. Eng., 2008, 16, 401. https://doi.org/10.1016/S1004-9541(08)60096-8
  3. Jusoh A., Shiung L., Ali N. et al.: Desalination, 2007, 9, 206. https://doi.org/10.1016/j.desal.2006.04.048
  4. Acharya J., Sahu J., Mohanty C., Meikap B.: Chem. Eng. J., 2009, 149, 249. http//doi.org/10.1016/j.cej.2008.10.029
  5. Olorundare O., Krause R., Okonkwo J.: Phys. Chem. Earth A/B/C, 2012, 50, 104. https://doi.org/10.1016/j.pce.2012.06.001
  6. Chen J., Wang X.: Sep. Purif. Technol., 2000, 19, 157. https://doi.org/10.1016/S1383-5866(99)00069-6
  7. Zhang K., Cheung W., Valix M.: Chemosphere, 2005, 50, 1129. https://doi.org/10.1016/j.chemosphere.2004.12.059
  8. Sekar M., Sakthi V., Rengaraj S.: J. Colloid Interf. Sci., 2004, 279, 307. https://doi.org/10.1016/j.jcis.2004.06.042
  9. Boudrahem F., Aissani-Benissad F., Ait-Amar H.: J. Environ. Manage., 2009, 90, 3031. https//doi.org./10.1016/j.jenvman.2009.04.005
  10. Depci T., Kul A., Onal Y.: Chem. Eng. J., 2012, 224, 200. https// doi.org./10.1016/j.cej.2012.06.077
  11. Chien S., Clayton W.: Soil Sci. Soc. Am. J., 1980, 44, 265. https://doi.org/10.2136/sssaj1980.03615995004400020013x
  12. Imamoglu M., Tekir O.: Desalination, 2008, 228, 108. https//doi:10.1016/j.desal.2007.08.011
  13. Singh C., Sahu J., Mahalik K. et al.: J. Hazard. Mater., 2008, 153, 221. https//doi.org/10.1016/j.jhazmat.2007.08.043
  14. Issabayeva G., Aroua M., Sulaiman N.: J. Hazard. Mater., 2008, 155, 109. https://doi.org/10.1016/j.jhazmat.2007.11.036
  15. Momčilović M., Purenović M., Bojić A. et.al.: Desalination, 2011, 276, 53. https://doi.org/10.1016/j.desal.2011.03.013
  16. Issabayeva G., Aroua M., Sulaiman N.: J. Hazard. Mater., 2008, 155, 109. https// 10.1016/j.jhazmat.2007.11.036
  17. Deliyanni E., Kyzas G., Triantafyllidis K., Matis K.: Open Chem., 2015, 13, 699. https://doi.org/10.1515/chem-2015-0087
  18. S. Z. Mohammadi, M. A. Karimi, D. Afzali, F. Mansouri, Desalination 262 (2010) 86 https://doi.org/10.1016/j.desal.2010.05.048
  19. Gupta V., Mohan D., Sharma S., Park K.: The Environmentalist, 1999, 19, 129. https://doi.org/10.1023/A:1006693017711