Застосування нанокомпозиту SD/MNP/PEI для сорбції важких металів

2023;
: cc. 878 - 886
Автори:
1
Chemistry and Petrochemistry Research Center, Standard Research Institute
2
Department of Food Science and Technology, Faculty of Agriculture, Urmia University

Отримано магнітний нанокомпозит на основі тирси, магнітних наночастинок і поліетиленіміну для вилучення іонів Pb(II), Cd(II) і Cu(II) з водного розчину. Адсорбція на нанокомпозиті показала максимальне вилучення 97% для Pb(II). Досліджено адсорбційну ємність у моделі псевдодругого порядку для Pb(II) і отримано значення 1,48 мг/г.

  1. Fan, C.; Li, K.; Li, J.; Ying, D.; Wang, Y.; Jia, J. Comparative and Competitive Adsorption of Pb (II) and Cu (II) Using Tetraethylenepentamine Modified Chitosan/CoFe2O4 Particles. J. Hazard. Mater. 2017, 326, 211-220. https://doi.org/10.1016/j.jhazmat.2016.12.036
  2. Qi, Y.; Wang, J.; Wang, X.; Cheng, J.J.; Wen, Z. Selective Adsorption of Pb(II) from Aqueous Solution Using Porous Biosilica Extracted from Marine Diatom Biomass: Properties and Mechanism. Appl. Surf. Sci. 2017, 396, 965-977. https://doi.org/10.1016/j.apsusc.2016.11.069
  3. Shachneva, E.; Archibasova D. Adsorption of Cadmium Ions from Aqueous Solutions on Modified Sorbents. Chem. Chem. Technol. 2018, 12, 182-187. https://doi.org/10.23939/chcht12.02.182
  4. Kheirandish, S.; Ghaedi, M.; Dashtian, K.; Jannesar, R.; Montazerozohori, M.; Pourebrahim, F.; Zare, M.A. Simultaneous Removal of Cd (II), Ni (II), Pb (II) and Cu (II) Ions via their Complexation with HBANSA Based on a Combined Ultrasound-Assisted and Cloud Point Adsorption Method Using CSG-BiPO4/FePO4 as Novel Adsorbent: FAAS Detection and Optimization Process. J. Colloid Interface Sci. 2017, 500, 241-252. https://doi.org/10.1016/j.jcis.2017.03.070
  5. Abdelhafez, A.A.; Li, J. Removal of Pb (II) from Aqueous Solution by Using Biochars Derived from Sugar Cane Bagasse and Orange Peel. J Taiwan Inst Chem Eng 2016, 61, 367-375. https://doi.org/10.1016/j.jtice.2016.01.005
  6. Shirzadi, H.; Nezamzadeh-Ejhieh, A. An Efficient Modified Zeolite for Simultaneous Removal of Pb (II) and Hg (II) from Aqueous Solution. J. Mol. Liq. 2017, 230, 221-229. https://doi.org/10.1016/j.molliq.2017.01.029
  7. Xu, X.; Li, H.; Wang, Q.; Li, D.; Han, X.; Yu, H. A Facile Approach for Surface Alteration of Pseudomonas putida I3 by Supplying K2SO4 into Growth Medium: Enhanced Removal of Pb (II) from Aqueous Solution. Bioresour. Technol. 2017, 232, 79-86. https://doi.org/10.1016/j.biortech.2017.02.038
  8. Ince, O.K.; Ince, M.; Yonten, V.; Goksu, A. A Food Waste Utilization Study for Removing Lead (II) from Drinks. Food Chem. 2017, 214, 637-643. https://doi.org/10.1016/j.foodchem.2016.07.117
  9. Ghasemi, E.; Heydari, A.; Sillanpää, M. Superparamagnetic Fe3O4@ EDTA Nanoparticles as an Efficient Adsorbent for Simultaneous Removal of Ag (I), Hg (II), Mn (II), Zn (II), Pb (II) and Cd (II) from Water and Soil Environmental Samples. Microchem. J. 2017, 131, 51-56. https://doi.org/10.1016/j.microc.2016.11.011
  10. Fu, R.; Liu, Y.; Lou, Z.; Wang, Z.; Baig, S.A.; Xu, X. Adsorptive Removal of Pb (II) by Magnetic Activated Carbon Incorporated with Amino Groups from Aqueous Solutions. J Taiwan Inst Chem Eng 2016, 62, 247-258. https://doi.org/10.1016/j.jtice.2016.02.012
  11. Parlayıcı, Ş.; Pehlivan, E. Removal of Metals by Fe3O4 Loaded Activated Carbon Prepared from plum stone (Prunus nigra): Kinetics and Modelling Study. Powder Technol. 2017, 317, 23-30. https://doi.org/10.1016/j.powtec.2017.04.021
  12. Balaji, T.; Sasidharan, M.; Matsunaga, H. Naked Eye Detection of Cadmium Using Inorganic–Organic Hybrid Mesoporous Material. Anal Bioanal Chem 2006, 384, 488–494. https://doi.org/10.1007/s00216-005-0187-2
  13. Kim, J.; Yoon, S.; Choi, M.; Min, K.J.; Park, K.Y.; Chon, K.; Bae, S. Metal Ion Recovery from Electrodialysis-Concentrated Plating Wastewater via Pilot-Scale Sequential Electrowinning/Chemical Precipitation. J. Clean. Prod. 2022, 330, 129879. https://doi.org/10.1016/j.jclepro.2021.129879
  14. Yoo, J.-C.; Lee, C.; Lee, J.-S.; Baek, K. Simultaneous Application of Chemical Oxidation and Extraction Processes is Effective at Remediating Soil Co-contaminated with Petroleum and Heavy Metals. J. Environ. Manage. 2017, 186, 314-319. https://doi.org/10.1016/j.jenvman.2016.03.016
  15. Bassam, R. Investigation of competitive adsorption and desorption of heavy metals from aqueous solution using raw rock: Characterization kinetic, isotherm, and thermodynamic. Materials Today: Proceedings, 2021.
  16. Mobasherpour, I.; Javaherai, M.; Salahi, E.; Ebrahimi, M.; Ashrafi, Z.; Orooji, Y. Removal of Pb(II) from Aqueous Solution by Ceramsite Prepared from Isfahan Bentonite and γ-Alumina. Chem. Chem. Technol. 2021, 15, 263–273. https://doi.org/10.23939/chcht15.02.263
  17. Khademolhosseini, M.R.; Mobasherpour, I.; Ghahremani, D. Lead Adsorption by Nano-Hydroxyapatite Granules in a Fixed-Bed Column. Chem. Chem. Technol. 2018, 12, 372-378. https://doi.org/10.23939/chcht12.03.372
  18. Yang, L.; Hu, W.; Chang, Z.; Liu, T.; Fang, D.; Shao, P.; Shi, H.; Luo, X. Electrochemical Recovery and High Value-Added Reutilization of Heavy Metal Ions from Wastewater: Recent Advances and Future Trends. Environ Int 2021, 152, 106512. https://doi.org/10.1016/j.envint.2021.106512
  19. Ubando, A.T.; Africa, A.D.M.; Maniquiz-Redillas, M.C.; Culaba, A.B.; Chen, W.-H.; Chang, J.-S. Microalgal Biosorption of Heavy Metals: A Comprehensive Bibliometric Review. J. Hazard. Mater. 2021, 402, 123431. https://doi.org/10.1016/j.jhazmat.2020.123431
  20. Syukor, A.A.; Sulaiman, S.; Siddique, M.N.I.; Zularisam, A.W.; Said, M.I.M. Integration of Phytogreen for Heavy Metal Removal from Wastewater. J. Clean. Prod. 2016, 112, 3124-3131. https://doi.org/10.1016/j.jclepro.2015.10.103
  21. Cao, D.-Q.; Song, X.; Fang, X.-M.; Yang, W.-Y.; Hao, X.-D.; Iritani, E.; Katagiri, N. Membrane Filtration-Based Recovery of Extracellular Polymer Substances from Excess Sludge and Analysis of their Heavy Metal Ion Adsorption Properties. Chem. Eng. J. 2018, 354, 866-874. https://doi.org/10.1016/j.cej.2018.08.121
  22. Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Experiment and Modeling for Flux and Permeate Concentration of Heavy Metal Ion in Adsorptive Membrane Filtration Using a Metal-Organic Framework Incorporated Nanofibrous Membrane. Chem. Eng. J. 2018, 352, 737-744. https://doi.org/10.1016/j.cej.2018.07.077
  23. Yurekli, Y.; Yildirim, M.; Aydin, L.; Savran, M. Filtration and Removal Performances of Membrane Adsorbers. J. Hazard. Mater. 2017, 332, 33-41. https://doi.org/10.1016/j.jhazmat.2017.02.061
  24. Pan, S.; Shen, J.; Deng, Z.; Zhang, X.; Pan, B. Metastable Nano-Zirconium Phosphate Inside Gel-Type Ion Exchanger for Enhanced Removal of Heavy Metals. J. Hazard. Mater. 2022, 423, 127158. https://doi.org/10.1016/j.jhazmat.2021.127158
  25. Jia, K.; Yi, Y.; Ma, W.; Cao, Y.; Li, G.; Liu, S.; Wang, T.; An, N. Ion Flotation of Heavy Metal Ions by Using Biodegradable Biosurfactant as Collector: Application and Removal Mechanism. Miner. Eng. 2022, 176, 107338. https://doi.org/10.1016/j.mineng.2021.107338
  26. Liao, Z.-L.; Zhao, Z.-C.; Zhu, J.-C.; Chen, H.; Meng, D.-Z. Complexing Characteristics between Cu(Ⅱ) Ions and Dissolved Organic Matter in Combined Sewer Overflows: Implications for the Removal of Heavy Metals by Enhanced Coagulation. Chemosphere 2021, 265, 129023. https://doi.org/10.1016/j.chemosphere.2020.129023
  27. Tao, H.-C.; Lei, T.; Shi, G.; Sun, X.-N.; Wei, X.-Y.; Zhang, L.-J.; Wu, W.-M. Removal of Heavy Metals from Fly Ash Leachate Using Combined Bioelectrochemical Systems and Electrolysis. J. Hazard. Mater. 2014, 264, 1-7. https://doi.org/10.1016/j.jhazmat.2013.10.057
  28. Ghasemi, A.; Ghasemi, Z. Modifying the Surface of TEOS Xerogel by Metal Ion Zn(II). Russ J Appl Chem 2017, 90, 826–829. https://doi.org/10.1134/S1070427217050251
  29. Khokhlov, A.; Strelko, V.; Khokhlova, L. Physico-Chemical Features of Bioactive Carbon Sorbents for Oil. Chem. Chem. Technol. 2018, 12, 337-340. https://doi.org/10.23939/chcht12.03.337
  30. Rydchuk, P.; Tymoshuk, O.S.; Oleksiv, L.V.; Chaban, T.I.; Matiychuk, V.S. Voltammetric Determination of Pt(IV) using 5-Hydroxyimino-4-imino-1,3-thiazolidine-2-one. Methods Objects Chem. Anal. 2019, 14, 130-139. https://doi.org/10.17721/moca.2019.130-139
  31. Shah, J.; Jan, M.J.; Jamil, S.; Haq, A. Magnetic Particles Precipitated onto Wheat Husk for Removal of Methyl Blue from Aqueous Solution. Toxicol Environ Chem 2014, 96, 218-226. https://doi.org/10.1080/02772248.2014.929690
  32. Hassani, S.; Ghasemi, A.; Fazli, M.; Haghbeen, K.; Legge, R.L. Cation‐Assisted Adsorption of Chlorophenols by Nano‐Xerogels. CJCE 2015, 93, 2214-2221. https://doi.org/10.1002/cjce.22341
  33. Benkartoussa, M.; Lehocine, M.B.; Arris, S.; Meniai, H.A. Adsorption Removal of Eriochrome Black T (EBT) and Rose Bengal (RB) from Aqueous Solutions Using Bio-Sorbents Combination. Chem. Chem. Technol. 2021, 15, 299-311. https://doi.org/10.23939/chcht15.02.299
  34. Gupta, N.; Kushwaha, A.K.; Chattopadhyaya, M. Application of Potato (Solanum tuberosum) Plant Wastes for the Removal of Methylene Blue and Malachite Green Dye from Aqueous Solution. Arab. J. Chem. 2016, 9, S707-S716. https://doi.org/10.1016/j.arabjc.2011.07.021
  35. Cai, H.; An, X.; Cui, J.; Li, J.; Wen, S.; Li, K.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Facile Hydrothermal Synthesis and Surface Functionalization of Polyethyleneimine-Coated Iron Oxide Nanoparticles for Biomedical Applications. ACS Appl. Mater. Interfaces 2013, 5, 1722-1731. https://doi.org/10.1021/am302883m
  36. Ghasemi, A.; Sohrabi, M.R.; Motiee, F. Preparation and Characterization of a New Sawdust/MNP/PEI Nanocomposite and its Applications for Removing Pb (II) Ions from Aqueous Solution. Water Sci. Technol. 2018, 78, 2469-2480. http://dx.doi.org/10.2166/wst.2018.521
  37. Zhu, H.; Wu, J.; Fang, M.; Tan, L.; Chen, C.; Alharbi, N.S.; Hayate, T.; Tan, X. Synthesis of a Core–Shell Magnetic Fe3O4–NH2@PmPD Nanocomposite for Efficient Removal of Cr(vi) from Aqueous Media. RSC Adv. 2017, 7, 36231-36241. https://doi.org/10.1039/C7RA05314B
  38. Mamera, M.; van Tol, J.J.; Aghoghovwia, M.P.; Kotze, E. Sensitivity and Calibration of the FT-IR Spectroscopy on Concentration of Heavy Metal Ions in River and Borehole Water Sources. Appl. Sci. 2020, 10, 7785. https://doi.org/10.3390/app10217785
  39. Foner, S. Versatile and Sensitive Vibrating‐Sample Magnetometer. Rev. Sci. Instrum. 1959, 30, 548-557
  40. Huang, C.-F.; Huang, A.-C.; Hsieh, Y.-F.; Chu, F.-J.; Wan, T.-J. The effects of Magnetic Nanoparticles Embedded with SA/PVA and pH on Chemical-Mechanical Polishing Wastewater and Magnetic Particle Regeneration and Recycle. Water Resour. Ind. 2017, 18, 9-16. https://doi.org/10.1016/j.wri.2017.06.001
  41.  Zhang, Y.; Xu, S.; Luo, Y.; Pan, S.; Dinga, H.; Li, G. Synthesis of Mesoporous Carbon Capsules Encapsulated with Magnetite Nanoparticles and their Application in Wastewater Treatment. J. Mater. Chem. 2011, 21, 3664-3671. https://doi.org/10.1039/C0JM03727C
  42. Wang, F.; Zhang, L.; Wang, Y.; Liu, X.; Rohani, S.; Lu, J. Fe3O4@ SiO2@ CS-TETA Functionalized Graphene Oxide for the Adsorption of Methylene Blue (MB) and Cu (II). Appl. Surf. Sci. 2017, 420, 970-981. https://doi.org/10.1016/j.apsusc.2017.05.179
  43. Ali, I.; Peng, C.; Lin, D.; Saroj, D.P.; Naz, I.; Khan, Z.M.; Sultan, M.; Ali, M. Encapsulated Green Magnetic Nanoparticles for the Removal of Toxic Pb2+ and Cd2+ from Water: Development, Characterization and Application. J. Environ. Manage. 2019, 234, 273-289. https://doi.org/10.1016/j.jenvman.2018.12.112
  44. Macalalad, A.; Rose Ebete, Q.; Gutierrez, D.; Ramos, M.; Magoling, B.J. Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth. Chem. Chem. Technol. 2021, 15, 1-8. http://dx.doi.org/10.23939/chcht15.01.001
  45. Farghali, A.A.; Bahgat, M.; Allah, A.E.; Khedr, M.H. Adsorption of Pb(II) Ions from Aqueous Solutions Using Copper Oxide Nanostructures. Beni-Suef University Journal of Basic and Applied Sciences 2013, 2, 61-71. https://doi.org/10.1016/j.bjbas.2013.01.001
  46. Lagergren, S. Zur Theorie der sogenannten Adsorption gelöster Stoffe; 1898.
  47. Blanchard, G.; Maunaye, M.; Martin, G. Removal of Heavy Metals from Waters by Means of Natural Zeolites. Water Res. 1984, 18, 1501-1507. http://dx.doi.org/10.1016/0043-1354(84)90124-6
  48. Gosset, T.; Trancart, J.-L.; Thévenot, D.R. Batch Metal Removal by Peat. Kinetics and Thermodynamics. Water Res. 1986, 20, 21-26. https://doi.org/10.1016/0043-1354(86)90209-5
  49. Ho, Y.-S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  50. Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial Behavior of Intraparticle Diffusion Model Used in the Description of Adsorption Kinetics. Chem. Eng. J. 2009, 153, 1-8. https://doi.org/10.1016/j.cej.2009.04.042
  51. Weber Jr, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. Journal of the sanitary engineering division 1963, 89, 31-59. https://doi.org/10.1061/JSEDAI.0000430