Дослідження вапняно-зольних тампонажних сумішей

2022;
: cc. 621 - 629
1
O. M. Becketov National University of Urban Economy in Kharkiv
2
National Technical University “Kharkiv Polytechnic Institute”
3
Lviv Polytechnic National University

Розроблено і досліджено нові конкурентоздатні тампонажні композиції – вапняно-зольні тампонажні суміші (ВЗТС), що розширюються при тужавінні, густиною 1450 – 1780 кг/м3.Компоненти: вапно, кислі золи виносу ТЕС. Рентгенофазовим аналізом тампонажного каменю уточнено склад новоутворень у процесі гідратації ВЗТС. Отримано кінетичні криві розширення тампонажного матеріалу при температурах 348–413 K. Визначено раціональні температурні режими тужавіння ВЗТС за критеріями міцності і газопроникності цементного каменю.

[1] Belokon, K.; Manidina, Y.; Fedchenok, A.; Banakh, A.; Mosiyevych L. The Physical and Mechanical Properties of Intermetallic Catalysts for the Neutralization of Carbon-Containing Components of Emission Gases. Procedia Environ. Sci. Eng. Manag. 2021, 8(1), 95-102.
[2] Kruzhilko, O.; Polukarov, O.; Vambol, S.; Vambol, V.; Khan, N.A.; Maystrenko, V.; Kalinchyk, V.P.; Khan A.H. Control of the Workplace Environment by Physical Factors and SMART Monitoring. Arch. Mater. Sci. Eng. 2020, 103(1), 18-29. https://doi.org /10.5604/01.3001.0014.1770.
[3] Odnorih, Z.; Manko, R.; Malovanyy, M.; Soloviy, K. Results of Surface Water Quality Monitoring of the Western Bug River Basin in Lviv Region. J. Ecol. Eng. 2020, 21(3), 18-26. https://doi.org/10.12911/22998993/118303.
[4] Popovych, V.; Telak, J.; Telak, O.; Malovanyy, M.; Yakovchuk, R.; Popovych N. Migration of Hazardous Components of Municipal Landfill Leachates into the Environment. J. Ecol. Eng. 2020, 21(1), 52-62. https://doi.org/10.12911/22998993/113246.
[5] Malovanyy, A.; Plaza, E.; Trela, J.; Malovanyy, M. Combination of Ion Exchange and Partial Nitritation/Anammox Process for Ammonium Removal from Mainstream Municipal Wastewater. Water Sci. Technol. 2014, 70(1), 144-151. https://doi.org/10.2166/wst.2014.208
[6] Kostenko, E.; Melnyk, L.; Matko, S.; Malovanyy, M. The Use of Sulphophtalein Dyes Immobilized on Anionite Ab-17X8 to Determine the Contents of Pb(II), Cu(II), Hg(II) and Zn(II) in Liquid Medium. Chem. Chem. Technol. 2017, 11(1), 117-124. https://doi.org/10.23939/chcht11.01.117.
[7] Voytovych, I.; Malovanyy, M.; Zhuk, V.; Mukha, O. Facilities and Problems of Processing Organic Wastes by Family-Type Biogas Plants in Ukraine. J. Water Land Dev. 2020, 45 (IV–VI), 185-189. https://doi.org/10.24425/jwld.2020.133493.
[8] Malovanyy, M.; Lyashok, Y.; Podkopayev, S.; Povzun, O.; Kipko, O.; Kalynychenko V.; Virich, S.; Skyrda, A. Environmental technologies for use of coal mining and chemical industry wastes. Environmental Technologies for Use of Coal Mining and Chemical Industry Wastes. J. Ecol. Eng. 2020, 21(2), 95-103. https://doi.org/10.12911/22998993/116339.
[9] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Zhuk, V.; Masikevych, A.; Synelnikov, S. Innovative Creation Technologies for the Growth Substrate Based on the Man-Made Waste - Perspective Way for Ukraine to Ensure Biological Reclamation of Waste Dumps And Quarries. Int. J. Foresight Innov. Policy 2020, 14(2/3/4), 248-263. https://doi.org/ 10.1504/IJFIP.2020.111239.
[10] Tymchuk, I.; Shkvirko, O.; Sakalova, H.; Malovanyy, M.; Dabizhuk, T.; Shevchuk, O.; Matviichuk, O.; Vasylinych, T. Wastewater a Source of Nutrients for Crops Growth and Development. J. Ecol. Eng. 2020, 21(5), 88-96. https://doi.org/ 10.12911/22998993/122188.
[11] Sanytsky, M.; Sobol, K.; Shcturmay, M.; Khymko, O. Low Energy Consuming Modified Composite Cements and Their Properties. Chem. Chem. Technol. 2011, 5(2), 227-230. https://doi.org/10.23939/chcht05.02.227.
[12] Marushchak, U.; Sanytsky, M.; Pozniak, O.; Mazurak O. Peculiarities of Nanomodified Portland Systems Structure Formation. Chem. Chem. Technol. 2019, 13(4), 510-517. https://doi.org/10.23939/chcht13.04.510.
[13] Orlovskyi, V.M. Improving the Quality of Heat–Resistant Borehole Cements. Geotechnologies 2019, 2, 16-21.
[14] Orlovskyi, V.M.; Pokhylko, A.M.; Krytskyi, V.V. Modern Borehole Cements. Geotechnologies 2018, 1, 44-52.
[15] Orlovskyi, V.M. Tamponazhni materialy, shcho rozshyriuiutsia pry tverdinni; PoltNTU im. Yu. Kondratiuka: Poltava, 2015.
[16] Salman, A. D.; Tatjána, J.; Al-Mayyahi, M. A.; Ibrahim, R. I.; Abdullah, T. A.; Khader, E. H. Improvement of Mechanical Properties of Oil Well Cement by Incorporate Nano-CaCO3 Prepared from Eggshell Waste. IOP Conference Series: Materials Science and Engineering 2020, 765(1), 012006. https://doi.org/10.1088/1757-899X/765/1/012006
[17] Khaliq, W.; Khan, H.A. High Temperature Material Properties of Calcium Aluminate Cement Concrete. Constr. Build. Mater. 2015, 94, 475-487. https://doi.org/10.1016/j.conbuildmat.2015.07.023
[18] Adje, S.; Elkatatny, S.; Aggrey, W.N.; Abdelraouf, Y. Geopolymer as the Future Oil-Well Cement. J. Pet. Sci. Eng. 2022, 208(B), 109485. https://doi.org/10.1016/j.petrol.2021.109485.
[19] Ahday, M.; Imqam, A. Fly Ash Class C Based Geopolymer for Oil Well Cementing. J. Pet. Sci. Eng. 2019, 179, 750-757. https://doi.org/10.1016/j.petrol.2019.04.106.
[20] Shtark, Y.; Viht, B. Tsement i izvest; Instytut budivelnykh materialiv im. Hrishmanova: Kyiv, 2008.
[21] Dvorkin, L.Y.; Skrypnyk I.H. Fizyko-khimichni i fizychni metody doslidzhennia budivelnykh materialiv; Natsionalnyi universytet vodnoho hospodarstva ta pryrodokorystuvannia: Rivne, 2006.
[22] Horskyi, V.F. Tamponazhni materialy i rozchyny; Chernivetskyi natsionalnyi universytet im. Yu. Fedkovycha: Chernivtsi, 2006.
[23] Bulatov, A.I.; Shamanov S.A. Metody ispytaniya tamponazhnykh materialov; Prosveschenie-Yug: Krasnodar, 2002.
[24] Agzamov, F.A.; Izmuhambetov, B.S.; Tokunova E.F. Khimiya tamponazhnykh i promyvochnykh rastvorov; Nedra: Saint Petersburg, 2011.
[25] Kurdowski, W. Chemia cementu i betonu; Polski cement: Kraków, 2010.
[26] Taymasov, B.T.; Klassen, V.K. Khimicheskaya tekhnologiya vyazhushchikh materialov; BGTU: Belgorod-Shymkent, 2017.
[27] Andreeva, N.A. Khimiya tsementa i vyazhushchikh veshchestv; SPbGASU: Saint Petersburg, 2011.
[28] Shmitko, E.I.; Krylova, A.V.; Shatalova, V.V. Khimiya tsementa i vyazhushchikh veshchestv; VGASU: Voronezh, 2005.
[29] Taylor, H.F.W. Cement chemistry; Thomas Telford Publishing: London, 1997.
[30] Brykov, A.S. Khimiya silikatnykh i kremnezemsoderzhashchikh vyazhushchih materialov; SPbGASU: Saint Petersburg, 2011.
[31] Kuzmenkov, M.I.; Kunitskaya, T.S. Vyazhushchie veshchestva i tehnologiya proizvodstva izdeliy na ikh osnove; BGTU: Minsk, 2003.
[32] Orlovskyi, V.; Malovanyy, M.; Biletskyi, V.; Sokur, M. Physico-Chemical Peculiarities of Weighted Thermostable Plugging Materials Hydration. Chem. Chem. Technol. 2021, 15(4), 599-607. https://doi.org/10.23939/chcht15.04.599
[33] Pushcharovskiy, D.Yu. Rentgenografiya mineralov; Geoinformmark: Moscow, 2000.
[34] Nizamutdinov, E.A. Issledovanie Fazovogo Sostava Vysokotemperaturnogo Tsementa. Nauka, obrazovanie i kultura 2017, 20 (Tom 2), 5-6.
[35] Izotov, V.S.; Sokolova, Yu.A. Khimicheskie dobavki dlya modifikatsii betona; Paleotip: Moscow, 2006.
[36] Agzamov, F.A.; Babkov, V.V.; Karimov, I.N. O Neobkhodimoy Velichine Rasshireniya Tamponazhnykh Materialov. Territoriya neftegaz 2011, 8, 14-15. https://neftegas.info/upload/iblock/4ed/4ed2387ae553085841245adae8c369e5...
[37] Ovchinnikov, V.P.; Aksenova, N.A.; Ovchinnikov, P.V. Fiziko-khimicheskie protsessy tverdeniya, rabota v skvazhine i korroziya tsementnogo kamnya; TGNGU: Tyumen, 2011.
[38] Gorobets, L.; Verhorobina, I.; Biletskyi, V.; Krivenko, A.; Grishchenko, M.; Bulakh, O. Identification of Factors to Reduce the Energy Costs of Dispersing in Jets. EasternEuropean J. Enterp. Technol. 2020, 6(1) (108), 55-62. https://doi.org/10.15587/1729-4061.2020.217253
[39] Biletskyi, V.; Horobets, L.; Fyk, M.; Al-Sultan, M. Theoretical Background of Rock Failure at Hydraulic Seam Fracture and after Effect Analysis. Min. Miner. Depos. 2018, 12(3), 45-55. https://doi.org/10.15407/mining12.03.045