Гідратні властивості композитних систем для ремедіації води та ґрунтів на основі нанокремнезему та дріжджових клітин

2022;
: cc. 630 - 638
1
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine
2
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine
3
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine
4
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine
5
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine

Методом низькотемпературної 1Н ЯМР-спектроскопії досліджено гідратні властивості біонанокомпозиту, створеного на основі суміші гідрофобного та гідрофільного кремнеземів (АМ1-300 та А-300, у співвідношенні 1:1), води, н-декану і дріжджових клітин. Отримана суміш нанокремнеземів сприяє мітозу та росту клітин. Показано, що причина активації процесів їхньої життєдіяльності може бути пов’язана з утворенням системи водних поліасоціатів, які змінюють умови перенесення речовини через клітинні мембрани, на межі розділу фаз твердих частинок і водного середовища.

[1] Chen, S.; Zhong, M. Bioremediation of Petroleum-Contaminated Soil. In Environmental Chemistry and Recent Pollution Control Approaches; Saldarriaga Noreña, H.A., Ed.; IntechOpen: London, 2019. https://doi.org/10.5772/intechopen.90289
[2] Wang, X.; Zheng, J.; Han, Z.; Chen, H. Bioremediation of Crude Oil-Contaminated Soil by Hydrocarbon-Degrading Microorganisms Immobilized on Humic Acid-Modified Biofuel Ash. J. Chem. Technol. Biotechnol. 2019, 94(6), 1904–1912. https://doi.org/10.1002/jctb.5969
[3] Malovanyy, M.; Petrushka, K.; Petrushka, I. Improvement of Adsorption-Ion-Exchange Processes for Waste and Mine Water Purification. Chem. Chem. Technol. 2019, 13(3), 372–376. https://doi.org/10.23939/chcht13.03.372
[4] Afzal, M.; Rehman, K.; Shabir, G.; Tahseen, R.; Ijaz, A.; Hashmat, A.J.; Brix, H. Large-Scale Remediation of Oil-Contaminated Water Using Floating Treatment Wetlands. NPJ Clean Water 2019, 2, 3. https://doi.org/10.1038/s41545-018-0025-7
[5] Kowalska, A.; Grobelak, A. Immobilisation of Selected Bacteria for Remediation on Various Media. Inż. Ochr. Śr. 2018, 21(4), 461–472. https://doi.org/10.17512/ios.2018.4.11
[6] Cheng, J. Bioremediation of Contaminated Water-Based on Various Technologies. Open Access Libr. PrePrints [Online] 2014, 3, 1-13. https://doi.org/10.4236/oalib.preprints.1200056 (accessed October 1, 2022).
[7] Coelho, L.M.; Rezende, H.C.; Coelho, L.M.; de Sousa, P.A.R.; Melo, D.F.O.; Coelho, N.M.M. Bioremediation of Polluted Waters Using Microorganisms. In Advances in Bioremediation of Wastewater and Polluted Soil; Shiomi, N., Ed.; IntechOpen: London, 2015. https://doi.org/10.5772/60770
[8] Shestopalov, O.V.; Bakharieva, G.Yu.; Mamedova, O.O.; Tverdokhliebova, N.Ye.; Yershov, D.I.; Mikheienko (Yashenko), L.О.; Sobol, Yu.О.; Yevtushenko, N.S.; Vas'kovets, L.А.; Chirkina, М.А. Okhorona Navkolyshn'oho Seredovyshcha vid Zabrudnennya Naftoproduktamy: Navch. Posib.; NTU “KhPI”: Kharkiv, 2015.
[9] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Nagurskyy, A.; Stadnik, V. Integrated Regeneration Method for Used Mineral Motor Oils. Chem. Chem. Technol. 2021, 15(2), 239–246. https://doi.org/10.23939/chcht15.02.239
[10] Loginova, O.O.; Dang, T.T.; Belousova, E.V.; Shalimova, S.S.; Shevchenko, M.Yu.; Grabovich M.Yu. Boidegradatsiya Nefteproduktov v Pochve Shtammami Mikroorganizmov Roda Acinetobacter. Organizatsiya i Regulyatsiya Fiziologo-Biokhimicheskikh Processov 2010, (12), 129–136.
[11] Zhao, Z.; Wong, J.W.C. Biosurfactants from Acinetobacter calcoaceticus BU03 Enhance the Solubility and Biodegradation of Phenanthrene. Environ. Technol. 2009, 30(3), 291–299. https://doi.org/10.1080/09593330802630801
[12] Toren, A.; Navon-Venezia, S.; Ron, E.Z.; Rosenberg, E. Emulsifying Activities of Purified Alasan Proteins from Acinetobacter radioresistens KA53. Appl. Environ. Microbiol. 2001, 67(3), 1102–1106. https://doi.org/10.1128/AEM.67.3.1102-1106.2001
[13] Khokhlov, A.; Strelko, V.; Khokhlova, L. Physico-Chemical Features of Bioactive Carbon Sorbents for Oil. Chem. Chem. Technol. 2018, 12(3), 337–340. https://doi.org/10.23939/chcht12.03.337
[14] Scherrer, P.; Mille, G. Biodegradation of Crude Oil in an Experimentally Polluted Peaty Mangrove Soil. Mar. Pollut. Bull. 1989, 20(9), 430–432. https://doi.org/10.1016/0025-326X(89)90061-1
[15] Poyedinok, N.; Belan, M.; Grishchenko, G. Biodestraсtion of Water-Oil, Run-off Hydrocarbons by Mixed Culture Microorganisms. Biotechnol. Lett. 1995, 17(11), 1273–1278. https://doi.org/10.1007/BF00128401
[16] Miller, J.I.; Techtmann, S.; Fortney, J.; Mahmoudi, N.; Joyner, D.; Liu J.; Olesen, S.; Alm, E.; Fernandez, A.; Gardinali, P. et al. Oil Hydrocarbon Degradation by Caspian Sea Microbial Communities. Front. Microbiol. [Online] 2019, 10, 995. https://doi.org/10.3389/fmicb.2019.00995. (accessed Oct 03, 2022).
[17] Heider, J.; Spormann, A.M.; Beller, H.R.; Widdel, F. Anaerobic Bacterial Metabolism of Hydrocarbons. FEMS Microbiol. Rev. 1999, 22(5), 459–473. https://doi.org/10.1111/j.1574-6976.1998.tb00381.x
[18] Labutova, N.M. Sposob Vydeleniya Shtammov Mikroorganizmov-Destruktorov Nefti. RU2624667C1, July 5, 2017.
[19] Ellis, B.; Balba, M.T.; Theile, P. Bioremediation of Oil Contaminated Land. Environ. Technol. 1990, 11(5), 443–454. https://doi.org/10.1080/09593339009384884
[20] Chugunov, V.A.; Ermolenko, Z.M.; Zhigletsova, S.K.; Martovetskaya, I.I.; Mironova, R.I.; Zhirkova, N.A.; Kholodenko, V.P.; Urakov, N.N. Development and Application of a Liquid Preparation with Oil-Oxidizing Bacteria. Appl. Biochem. Microbiol. 2000, 36(6), 577–581. https://doi.org/10.1023/A:1026696506947
[21] Chobotarov, A.; Volkogon, M.; Voytenko, L.; Kurdish, I. Accumulation of Phytohormones by Soil Bacteria Azotobacter vinelandii and Bacillus subtilis under the Influence of Nanomaterials. J. Microbiol. Biotechnol. Food Sci. 2017, 7(3), 271-274. http://doi.org/10.15414/jmbfs.2017/18.7.3.271-274
[22] Krupska, T.V.; Turova, A.A.; Gun’ko, V.M.; Turov, V.V. Influence of Highly Dispersed Materials on Physiological Activity of Yeast Cells. Biopolym. Cell. 2009, 25(4), 290–297. http://doi.org/10.7124/bc.0007E8
[23] Turov, V.V.; Gun'ko, V.M. Klasterizovannaya voda i puti ee ispol'zovaniya; Naukova Dumka: Kyiv, 2011.
[24] Turov, V.V.; Gun'ko, V.M.; Pakhlov, E.M.; Krupska, T.V.; Tsapko, M.D.; Charmas, B.; Kartel, M.T. Influence of Hydrophobic Nanosilica and Hydrophobic Medium on Water Bound in Hydrophilic Components of Complex Systems. Colloids Surf. A Physicochem. Eng. Asp. 2018, 552, 39-47. https://doi.org/10.1016/j.colsurfa.2018.05.017
[25] Protsak, I.; Gun’ko, V.M.; Turov, V.V.; Krupska, T.V.; Pakhlov, E.M.; Zhang, D.; Dong, W.; Le, Z. Nanostructured Polymethylsiloxane/Fumed Silica Blends. Materials 2019, 12(15), 2409. https://doi.org/10.3390/ma12152409
[26] Krupskaya, T.V.; Gun'ko, V.M.; Protsak, I.S.; Yelahina, N.V.; Turov, V.V. Composites Based on Succinic Acid and Fumed Amorphous Silicas. Theor. Exp. Chem. 2020, 56(1), 50-56. https://doi.org/10.1007/s11237-020-09640-8
[27] Gun'ko, V.M.; Turov, V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena, 1st ed.; Taylor & Francis, 2013. https://doi.org/10.1201/b14202
[28] Aksnes, D.W.; Kimtys, L. 1H and 2H NMR Studies of Benzene Confined in Porous Solids: Melting Point Depression and Pore Size Distribution. Solid State Nucl. Magn. Reson. 2004, 25(1-3), 146-152. https://doi.org/10.1016/j.ssnmr.2003.03.001
[29] Petrov, O.V.; Furo, I. NMR Cryoporometry: Principles, Applications and Potential. Prog. Nucl. Magn. Reson. Spectrosc. 2009, 54(2), 97-122. https://doi.org/10.1016/j.pnmrs.2008.06.001
[30] Glushko, V.P. Termodinamicheskiye svoystva individualnykh veshchestv; Nauka: Moscow, 1978.