Hydrated Properties of Composite Systems for Water and Soil Remediation on the Basis of Nanosilicas and Yeast Cells

2022;
: pp. 630 - 638
1
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine
2
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine
3
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine
4
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine
5
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine

The method of low-temperature 1Н NMR spectroscopy is applied to study the hydrated properties of bio-nanocomposite created on the basis of the mixture of hydrophobic and hydrophilic silicas (АМ1-300 and А 300 with ratio of 1:1), water, n-decane, and yeast cells. The produced mixture of nanosilicas contributes to mitosis and cell growth. It is shown that the cause of activation of their vital processes may be related to the formation of the system of water polyassociates, which change the conditions of substance transport through the cell membranes, on the phase boundaries of solid particles and aqueous medium.

[1] Chen, S.; Zhong, M. Bioremediation of Petroleum-Contaminated Soil. In Environmental Chemistry and Recent Pollution Control Approaches; Saldarriaga Noreña, H.A., Ed.; IntechOpen: London, 2019. https://doi.org/10.5772/intechopen.90289
[2] Wang, X.; Zheng, J.; Han, Z.; Chen, H. Bioremediation of Crude Oil-Contaminated Soil by Hydrocarbon-Degrading Microorganisms Immobilized on Humic Acid-Modified Biofuel Ash. J. Chem. Technol. Biotechnol. 2019, 94(6), 1904–1912. https://doi.org/10.1002/jctb.5969
[3] Malovanyy, M.; Petrushka, K.; Petrushka, I. Improvement of Adsorption-Ion-Exchange Processes for Waste and Mine Water Purification. Chem. Chem. Technol. 2019, 13(3), 372–376. https://doi.org/10.23939/chcht13.03.372
[4] Afzal, M.; Rehman, K.; Shabir, G.; Tahseen, R.; Ijaz, A.; Hashmat, A.J.; Brix, H. Large-Scale Remediation of Oil-Contaminated Water Using Floating Treatment Wetlands. NPJ Clean Water 2019, 2, 3. https://doi.org/10.1038/s41545-018-0025-7
[5] Kowalska, A.; Grobelak, A. Immobilisation of Selected Bacteria for Remediation on Various Media. Inż. Ochr. Śr. 2018, 21(4), 461–472. https://doi.org/10.17512/ios.2018.4.11
[6] Cheng, J. Bioremediation of Contaminated Water-Based on Various Technologies. Open Access Libr. PrePrints [Online] 2014, 3, 1-13. https://doi.org/10.4236/oalib.preprints.1200056 (accessed October 1, 2022).
[7] Coelho, L.M.; Rezende, H.C.; Coelho, L.M.; de Sousa, P.A.R.; Melo, D.F.O.; Coelho, N.M.M. Bioremediation of Polluted Waters Using Microorganisms. In Advances in Bioremediation of Wastewater and Polluted Soil; Shiomi, N., Ed.; IntechOpen: London, 2015. https://doi.org/10.5772/60770
[8] Shestopalov, O.V.; Bakharieva, G.Yu.; Mamedova, O.O.; Tverdokhliebova, N.Ye.; Yershov, D.I.; Mikheienko (Yashenko), L.О.; Sobol, Yu.О.; Yevtushenko, N.S.; Vas'kovets, L.А.; Chirkina, М.А. Okhorona Navkolyshn'oho Seredovyshcha vid Zabrudnennya Naftoproduktamy: Navch. Posib.; NTU “KhPI”: Kharkiv, 2015.
[9] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Nagurskyy, A.; Stadnik, V. Integrated Regeneration Method for Used Mineral Motor Oils. Chem. Chem. Technol. 2021, 15(2), 239–246. https://doi.org/10.23939/chcht15.02.239
[10] Loginova, O.O.; Dang, T.T.; Belousova, E.V.; Shalimova, S.S.; Shevchenko, M.Yu.; Grabovich M.Yu. Boidegradatsiya Nefteproduktov v Pochve Shtammami Mikroorganizmov Roda Acinetobacter. Organizatsiya i Regulyatsiya Fiziologo-Biokhimicheskikh Processov 2010, (12), 129–136.
[11] Zhao, Z.; Wong, J.W.C. Biosurfactants from Acinetobacter calcoaceticus BU03 Enhance the Solubility and Biodegradation of Phenanthrene. Environ. Technol. 2009, 30(3), 291–299. https://doi.org/10.1080/09593330802630801
[12] Toren, A.; Navon-Venezia, S.; Ron, E.Z.; Rosenberg, E. Emulsifying Activities of Purified Alasan Proteins from Acinetobacter radioresistens KA53. Appl. Environ. Microbiol. 2001, 67(3), 1102–1106. https://doi.org/10.1128/AEM.67.3.1102-1106.2001
[13] Khokhlov, A.; Strelko, V.; Khokhlova, L. Physico-Chemical Features of Bioactive Carbon Sorbents for Oil. Chem. Chem. Technol. 2018, 12(3), 337–340. https://doi.org/10.23939/chcht12.03.337
[14] Scherrer, P.; Mille, G. Biodegradation of Crude Oil in an Experimentally Polluted Peaty Mangrove Soil. Mar. Pollut. Bull. 1989, 20(9), 430–432. https://doi.org/10.1016/0025-326X(89)90061-1
[15] Poyedinok, N.; Belan, M.; Grishchenko, G. Biodestraсtion of Water-Oil, Run-off Hydrocarbons by Mixed Culture Microorganisms. Biotechnol. Lett. 1995, 17(11), 1273–1278. https://doi.org/10.1007/BF00128401
[16] Miller, J.I.; Techtmann, S.; Fortney, J.; Mahmoudi, N.; Joyner, D.; Liu J.; Olesen, S.; Alm, E.; Fernandez, A.; Gardinali, P. et al. Oil Hydrocarbon Degradation by Caspian Sea Microbial Communities. Front. Microbiol. [Online] 2019, 10, 995. https://doi.org/10.3389/fmicb.2019.00995. (accessed Oct 03, 2022).
[17] Heider, J.; Spormann, A.M.; Beller, H.R.; Widdel, F. Anaerobic Bacterial Metabolism of Hydrocarbons. FEMS Microbiol. Rev. 1999, 22(5), 459–473. https://doi.org/10.1111/j.1574-6976.1998.tb00381.x
[18] Labutova, N.M. Sposob Vydeleniya Shtammov Mikroorganizmov-Destruktorov Nefti. RU2624667C1, July 5, 2017.
[19] Ellis, B.; Balba, M.T.; Theile, P. Bioremediation of Oil Contaminated Land. Environ. Technol. 1990, 11(5), 443–454. https://doi.org/10.1080/09593339009384884
[20] Chugunov, V.A.; Ermolenko, Z.M.; Zhigletsova, S.K.; Martovetskaya, I.I.; Mironova, R.I.; Zhirkova, N.A.; Kholodenko, V.P.; Urakov, N.N. Development and Application of a Liquid Preparation with Oil-Oxidizing Bacteria. Appl. Biochem. Microbiol. 2000, 36(6), 577–581. https://doi.org/10.1023/A:1026696506947
[21] Chobotarov, A.; Volkogon, M.; Voytenko, L.; Kurdish, I. Accumulation of Phytohormones by Soil Bacteria Azotobacter vinelandii and Bacillus subtilis under the Influence of Nanomaterials. J. Microbiol. Biotechnol. Food Sci. 2017, 7(3), 271-274. http://doi.org/10.15414/jmbfs.2017/18.7.3.271-274
[22] Krupska, T.V.; Turova, A.A.; Gun’ko, V.M.; Turov, V.V. Influence of Highly Dispersed Materials on Physiological Activity of Yeast Cells. Biopolym. Cell. 2009, 25(4), 290–297. http://doi.org/10.7124/bc.0007E8
[23] Turov, V.V.; Gun'ko, V.M. Klasterizovannaya voda i puti ee ispol'zovaniya; Naukova Dumka: Kyiv, 2011.
[24] Turov, V.V.; Gun'ko, V.M.; Pakhlov, E.M.; Krupska, T.V.; Tsapko, M.D.; Charmas, B.; Kartel, M.T. Influence of Hydrophobic Nanosilica and Hydrophobic Medium on Water Bound in Hydrophilic Components of Complex Systems. Colloids Surf. A Physicochem. Eng. Asp. 2018, 552, 39-47. https://doi.org/10.1016/j.colsurfa.2018.05.017
[25] Protsak, I.; Gun’ko, V.M.; Turov, V.V.; Krupska, T.V.; Pakhlov, E.M.; Zhang, D.; Dong, W.; Le, Z. Nanostructured Polymethylsiloxane/Fumed Silica Blends. Materials 2019, 12(15), 2409. https://doi.org/10.3390/ma12152409
[26] Krupskaya, T.V.; Gun'ko, V.M.; Protsak, I.S.; Yelahina, N.V.; Turov, V.V. Composites Based on Succinic Acid and Fumed Amorphous Silicas. Theor. Exp. Chem. 2020, 56(1), 50-56. https://doi.org/10.1007/s11237-020-09640-8
[27] Gun'ko, V.M.; Turov, V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena, 1st ed.; Taylor & Francis, 2013. https://doi.org/10.1201/b14202
[28] Aksnes, D.W.; Kimtys, L. 1H and 2H NMR Studies of Benzene Confined in Porous Solids: Melting Point Depression and Pore Size Distribution. Solid State Nucl. Magn. Reson. 2004, 25(1-3), 146-152. https://doi.org/10.1016/j.ssnmr.2003.03.001
[29] Petrov, O.V.; Furo, I. NMR Cryoporometry: Principles, Applications and Potential. Prog. Nucl. Magn. Reson. Spectrosc. 2009, 54(2), 97-122. https://doi.org/10.1016/j.pnmrs.2008.06.001
[30] Glushko, V.P. Termodinamicheskiye svoystva individualnykh veshchestv; Nauka: Moscow, 1978.