Ультрадисперсні нановолокна з фазовим переходом на основі поліетиленгліколю 1000 (PEG1000) як матеріалу з фазовим переходом (PCM) та поліаміду 6 (PA6) як допоміжного матеріалу виготовлено методом однонаправленого електроспінінгу на систематизованій основі, запланованій програмним забезпеченням Design-Expert®. Застосовано метод поверхневого відгуку (RSM) для оптимізації параметрів та умов, що ведуть до мінімізації діаметра волокна. За допомогою центрального композиційного плану (CCD) вивчено вплив вмісту PEG, прикладеної напруги, калібру голки та швидкості потоку на характеристики волокна. Згідно розрахунків за квад¬ратичною моделлю мінімальний діаметр нановолокон становить 64,33 нм; фактичний діаметр волокон, виготовлених за оптимальних умов, показав дуже низьку відносну стандартну похибку (RSE). Встановлено, що масове співвідношення PEG/ PA6 має домінуючий вплив на діаметр волокон. Результати FTIR та FE-SEM підтвердили інкапсуляцію PEG у PA6, і відсутність змін у морфології після тестів на нагрівання. Для подальшого дослідження морфологічної структури та якості інкапсуляції PEG1000 у матрицях PA6 композиційні волокна проведено оброблення розчинником з використанням етанолу. Запропоновано новий інноваційний метод контролю умов електроспінінгу для інкапсуляції матеріалів з фазовим переходом в полімерних матрицях, що є дуже важливим у програмах енергозбереження/енерговідновлення.
- Van Do, C.; Nguyen, T.T.T.; Park, J.S. Fabrication of Polyethylene Glycol/Polyvinylidene Fluoride Core/Shell Nanofibers via Melt Electrospinning and their Characteristics. Sol. Energy Mater. Sol. Cells 2012, 104, 131-139. https://doi.org/10.1016/j.solmat.2012.04.029
- Riffat, S.; Mempouo, B.; Fang, W. Phase Change Material Developments: A Review. Int. J. Ambient Energy 2013, 36, 102-115. https://doi.org/10.1080/01430750.2013.823106
- Iqbal, K.; Sun, D. Development of Thermo-Regulating Polypropylene Fibre Containing Microencapsulated Phase Change Materials. Renew. Energy 2014, 71, 473-479. https://doi.org/10.1016/j.renene.2014.05.063
- Golestaneh, S.I.; Mosallanejad, A.; Karimi, G.; Khorram, M.; Khashi, M. Fabrication and Characterization of Phase Change Material Composite Fibers with Wide Phase-Transition Temperature Range by Co-Electrospinning Method. Appl. Energy 2016, 182, 409-417. https://doi.org/10.1016/j.apenergy.2016.08.136
- Cai, Y.; Ke, H.; Dong, J.; Wei, Q.; Lin, J.; Zhao, Y.; Song, L.; Hu, Y.; Huang, F.; Gao, W. et al. Effects of Nano-SiO2 on Morphology, Thermal Energy Storage, Thermal Stability, and Combustion Properties of Electrospun Lauric Acid/PET Ultrafine Composite Fibers as Form-Stable Phase Change Materials. Appl. Energy 2011, 88, 2106-2112. https://doi.org/10.1016/j.apenergy.2010.12.071
- Cai, Y.; Xu, X.; Gao, C.; Bian, T.; Qiao, H.; Wei, Q. Structural Morphology and Thermal Performance of Composite Phase Change Materials Consisting of Capric Acid Series Fatty Acid Eutectics and Electrospun Polyamide6 Nanofibers for Thermal Energy Storage. Mater Lett. 2012, 89, 43-46. https://doi.org/10.1016/j.matlet.2012.08.067
- Wu, Y.; Chen, C.; Jia, Y.; Wu, J.; Huang, Y.; Wang, L. Review on Electrospun Ultrafine Phase Change Fibers (PCFs) for Thermal Energy Storage. Appl. Energy 2018, 210, 167-181. https://doi.org/10.1016/j.apenergy.2017.11.001
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on Thermal Energy Storage with Phase Change Materials and Applications. Renew. Sustain. Energy Rev. 2009, 13, 318-345. https://doi.org/10.1016/j.rser.2007.10.005
- Fallahi, A.; Guldentops, G.; Tao, M.; Granados-Focil, S.; Van Dessel, S. Review on Solid-Solid Phase Change Materials for Thermal Energy Storage: Molecular Structure and Thermal Properties. Appl. Therm. Eng. 2017, 127, 1427-1441. https://doi.org/10.1016/j.applthermaleng.2017.08.161
- Sarier, N.; Onder, E. Organic Phase Change Materials and their Textile Applications: An Overview. Thermochimica Acta 2012, 540, 7-60. https://doi.org/10.1016/j.tca.2012.04.013
- Cai, Y.; Zong, X.; Zhang, J.; Hu, Y.; Wei, Q.; He, G.; Wang, X.; Zhao, Y.; Fong, H. Electrospun Nanofibrous Mats Absorbed with Fatty Acid Eutectics as an Innovative Type of Form-Stable Phase Change Materials for Storage and Retrieval of Thermal Energy. Sol. Energy Mater. Sol. Cells 2013, 109, 160-168. https://doi.org/10.1016/j.solmat.2012.10.022
- Chen, C.; Liu, K.; Wang, H.; Liu, W.; Zhang, H. Morphology and Performances of Electrospun Polyethylene Glycol/Poly(DL-Lactide) Phase Change Ultrafine Fibers for Thermal Energy Storage. Sol. Energy Mater Sol. Cells 2013, 117, 372-381. https://doi.org/10.1016/j.solmat.2013.07.001
- Chalco-Sandoval, W.; Fabra, M.J.; López-Rubio, A.; Lagaron, J.M. Optimization of Solvents for the Encapsulation of a Phase Change Material in Polymeric Matrices by Electro-Hydrodynamic Processing of Interest in Temperature Buffering Food Applications. Eur. Polym. J. 2015, 72, 23-33. https://doi.org/10.1016/j.eurpolymj.2015.08.033
- Na, P.; Widjojo, N.; Sukitpaneenit, P.; Teoh, M.M.; Lipscomb, G.G.; Chung, T.-S.; Lai, J.-Y. Evolution of Polymeric Hollow Fibers as Sustainable Technologies: Past, Present, and Future. Prog. Polym. Sci. 2012, 37, 1401-1424. https://doi.org/10.1016/j.progpolymsci.2012.01.001
- Tort, S.; Acartürk, F. Preparation and Characterization of Electrospun Nanofibers Containing Glutamine. Carbohydr. Polym. 2016, 152, 802-814. https://doi.org/10.1016/j.carbpol.2016.07.028
- Akhtar, M.N.; Sulong, A.B.; Karim, S.A.; Azhari, C.H.; Raza M. R. Evaluation of Thermal, Morphological and Mechanical Properties of PMMA/NaCl/DMF Electrospun Nanofibers: An Investigation Through Surface Methodology Approach. Iran. Polym. J. 2015, 24, 1025-1038. https://doi.org/10.1007/s13726-015-0390-8
- Sedghi, R.; Shaabani, A. Electrospun Biocompatible Core/Shell Polymer-Free Core Structure Nanofibers with Superior Antimicrobial Potency Against Multi Drug Resistance Organisms. Polymer 2016, 101, 151-157. https://doi.org/10.1016/j.polymer.2016.08.060
- Stepanyan, R.; Subbotin, A.V.; Cuperus, L.; Boonen, P.; Dorschu, M.; Oosterlinck, F.; Bulters, M.J.H. Nanofiber Diameter in Electrospinning of Polymer Solutions: Model and Experiment. Polymer 2016, 97, 428-439. https://doi.org/10.1016/j.polymer.2016.05.045
- McCann, J.T.; Marquez, M.; Xia, Y. Melt Coaxial Electrospinning: A Versatile Method for the Encapsulation of Solid Materials and Fabrication of Phase Change Nanofibers. Nano Lett. 2006, 12, 2868-2872. https://doi.org/10.1021/nl0620839
- Chen, C.; Wang, L.; Huang, Y. Morphology and Thermal Properties of Electrospun Fatty Acids/Polyethylene Terephthalate Composite Fibers as Novel Form-Stable Phase Change Materials. Sol. Energy Mater. Sol. Cells 2008, 92, 1382-1387. https://doi.org/10.1016/j.solmat.2008.05.013
- Pérez-Masiá, R.; López-Rubio, A.; Lagarón, J.M. Development of Zein-Based Heat-Management Structures for Smart Food Packaging. Food Hydrocoll. 2013, 30, 182-191. https://doi.org/10.1016/j.foodhyd.2012.05.010
- Kulkarni, A.; Bambole, V.A.; Mahanwar, P.A. Electrospinning of Polymers, Their Modeling and Applications. Polym. Plast. Technol. Eng. 2010, 49, 427-441. https://doi.org/10.1080/03602550903414019
- Saeed, M.J.; Azizli, K.; Isa, M.H.; Bashir, M.J.K. Application of CCD in RSM to Obtain Optimize Treatment of POME Using Fenton Oxidation Process. J. Water Process. Eng. 2015, 8, e7-e16. https://doi.org/10.1016/j.jwpe.2014.11.001
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965-977. https://doi.org/10.1016/j.talanta.2008.05.019
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley and Sons, Inc.: Arizona, 2011.
- Hafizi, A.; Ahmadpour, A.; Koolivand-Salooki, M.; Koolivand- Salooki, M.; Heravi, M.M.; Bamoharram, F.F. Comparison of RSM and ANN for the Investigation of Linear Alkylbenzene Synthesis over H14[NaP5W30O110]/SiO2 Catalyst. J. Ind. Eng. Chem. 2013, 19, 1981-1989. https://doi.org/10.1016/j.jiec.2013.03.007
- Chen, C.; Liu, W.; Yang, H.; Zhao, Y.; Liu, S. Synthesis of Solid-Solid Phase Change Material for Thermal Energy Storage by Crosslinking of Polyethylene Glycol with Poly (Glycidyl Methacrylate). Sol. Energy 2011, 85, 2679-2685. https://doi.org/10.1016/j.solener.2011.08.002
- Sarı, A.; Alkan, C.; Biçer, A. Synthesis and Thermal Properties of Polystyrene-Graft-PEG Copolymers as New Kinds of Solid-Solid Phase Change Materials for Thermal Energy Storage. Mater. Chem. Phys. 2012, 133, 87-94. https://doi.org/10.1016/j.matchemphys.2011.12.056
- Dang, T.N.; Nguyen, T.T.T.; Chung, O.H.; Park, J.S. Fabrication of Form-Stable Poly(ethylene glycol)-Loaded Poly(vinylidene fluoride) Nanofibers via Single and Coaxial Electrospinning. Macromol. Res. 2015, 23, 819-829. https://doi.org/10.1007/s13233-015-3109-y
- Nguyen, T.T.T.; Park, J.S. Fabrication of Electrospun Nonwoven Mats of Polyvinylidene Fluoride/Polyethylene Glycol/Fumed Silica for Use as Energy Storage Materials. J. Appl. Polym. Sci. 2011, 121, 3596-3603. https://doi.org/10.1002/app.34148
- Babapoor, A.; Karimi, G.; Khorram, M. Fabrication and Characterization of Nanofiber-Nanoparticle-Composites with Phase Change Materials by Electrospinning. Appl. Therm. Eng. 2016, 99, 1225-1235. https://doi.org/10.1016/j.applthermaleng.2016.02.026
- Babapoor, A.; Karimi, G.; Golestaneh, S.I.; Mezjin, M.A. Coaxial Electro-Spun PEG/PA6 Composite Fibers: Fabrication and Characterization. Appl. Therm. Eng. 2017, 118, 398-407. https://doi.org/10.1016/j.applthermaleng.2017.02.119
- Shi, Q.; Liu, Z.; Jin, X.; Shen, Y.; Liu, Y. Electrospun Fibers Based on Polyvinyl Pyrrolidone/Eu-polyethylene Glycol as Phase Change Luminescence Materials. Mater. Lett. 2015, 147, 113-115. https://doi.org/10.1016/j.matlet.2015.02.040
- Noshadi, I.; Amin, N.A.S.; Parnas, R.S. Continuous Production of Biodiesel from Waste Cooking Oil in a Reactive Distillation Column Catalyzed by Solid Heteropolyacid: Optimization Using Response Surface Methodology (RSM). Fuel 2012, 94, 156-164. https://doi.org/10.1016/j.fuel.2011.10.018
- Hafizi, A.;Ahmadpour, A.; Heravi, M.M.; Bamoharram, F.F.; Khosroshahi, M. Alkylation of Benzene with 1-Decene Using Silica Supported Preyssler Heteropoly Acid: Statistical Design with Response Surface Methodology. Chinese J. Catal. 2012, 33, 494-501. https://doi.org/10.1016/S1872-2067(11)60357-4
- Forutan, H.R.; Karimi, E.; Hafizi, A.; Rahimpour, M.R.; Keshavarz, P. Expert Representation Chemical Looping Reforming: A Comparative Study of Fe, Mn, Co and Cu as Oxygen Carriers Supported on Al2O3. J. Ind. Eng. Chem. 2015, 21, 900-911. https://doi.org/10.1016/j.jiec.2014.04.031
- Aliabadi, M.; Irani, M.; Ismaeili, J.; Najafzadeh, S. Design and Evaluation of Chitosan/Hydroxyapatite Composite Nanofiber Membrane for the Removal of Heavy Metal Ions from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2014, 45, 518-526. https://doi.org/10.1016/j.jtice.2013.04.016
- Chen, C.; Wang, L.; Huang, Y. Electrospun Phase Change Fibers Based on Polyethylene Glycol/cellulose Acetate Blends. Appl. Energy 2011, 88, 3133-3139. https://doi.org/10.1016/j.apenergy.2011.02.026
- Šehić, A.; Tomšič, B.; Jerman, I.; Vasiljević, J.; Medved, J.; Simončič, B. Synergistic Inhibitory Action of P- and Si-containing Precursors in Sol-Gel Coatings on the Thermal Degradation of Polyamide 6. Polym. Degrad. Stab. 2016, 128, 245-252. https://doi.org/10.1016/j.polymdegradstab.2016.03.026
- Wu, Q.; Lü, J.; Qu, B. Preparation and Characterization of Microcapsulated Red Phosphorus and its Flame-Retardant Mechanism in Halogen-Free Flame Retardant Polyolefins. Polym. Int. 2003, 52, 1326-1331. https://doi.org/10.1002/pi.1115