Cинтез, антимікробна й антиоксидантна активність 3-арил-6,7-дигідро-5н-[1,3]тіазоло[3,2-a]піримідинів

2025;
: cc. 250 - 258
1
Department of Organic and Pharmaceutical Chemistry, Lesya Ukrainka Volyn National University
2
Lesya Ukrainka Volyn National University
3
Department of Organic and Pharmaceutical Chemistry, Lesya Ukrainka Volyn National University
4
Department of Medical and Pharmaceutical Chemistry, Bukovinian State Medical University, Chernivtsi 58000, Ukraine
5
Department of Medical and Pharmaceutical Chemistry, Bukovinian State Medical University, Chernivtsi 58000, Ukraine
6
Department of Functional Heterocyclic Systems, Institute of Organic Chemistry of National Academy of Sciences of Ukraine
7
Інститут органічної хімії НАН України

Циклоконденсацією тетрагідропіримідин-2(1Н)-ону з 2-бромo-1-арилетанонами отримано низку 3-aрил-6,7-дигідрo-5H-[1,3]тіазоло[3,2-a]піримідинів. Встановлено, що природа замісника в ароматичному ядрі фенацилброміду суттєво позначається на перебігу такого типу реакції. Зокрема, у разі 2-бромo-1-(4-гідроксифеніл)етанону цільовий біциклічний продукт утворюється внаслідок 4 год кип'ятіння в етанолі, натомість для циклоконденсації тетрагідропіримідин-2(1Н)-тіону з іншими бромометиларилкетонами час реакції становив 10 год. Знайдено, що результатом взаємодії тетрагідропіримідин-2(1Н)-тіону та 2-бромo-1-(4-хлорофеніл)етанону впродовж 4 год є продукт S-алкілювання – 1-(4-хлорофеніл)-2-[(1,4,5,6-тетрагідропіримідин-2-іл)тіо]етанон, внутрішньомолекулярна циклізація якого під дією H3PO4 приводить до 3-(4-хлорофеніл)-6,7-дигідро-5H-[1,3]тіазоло[3,2-a]піримідину. Результати проведеного біоскринінгу синтезованих 3-aрил-6,7-дигідрo-5H-[1,3]тіазоло[3,2-a]піримідинів продемонстрували їхню помірну антимікробну активність і дали змогу виявити потенційний синтетичний антиоксидант – 3-(4-фторофеніл)-6,7-дигідрo-5H-[1,3]тіазоло[3,2-a]піримідин (І = 88.2%).

[1] Leeson, P.; Springthorpe, B. The Influence of Drug-Like Concepts on Decision-Making in Medicinal Chemistry. Nat. Rev. Drug. Discov. 2007, 6, 881–890. https://doi.org/10.1038/nrd2445

[2] Qadir, T.; Amin, A.; Sharma, P. K.; Jeelani, I.; Abe, H. A Review on Medicinally Important Heterocyclic Compounds. Open Med. Chem. J. 2022, 16, e2202280. https://doi.org/10.2174/18741045-v16-e2202280

[3] Saliyeva, L. M.; Dyachenko, I. V.; Danyliuk, I. Y.; Vovk, M. V. Di-, tetra-, and perhydropyrrolo [1,2-a] imidazoles: The Methods of Synthesis and Some Aspects of Application. Chem. Heterocycl. Compd. 2022, 58, 661–680. https://doi.org/10.1007/s10593-023- 03142-w

[4] Okamoto, S.; Sakai, Y.; Watanabe, S.; Nishi, S.; Yoneyama, A.; Katsumata, H.; Kosaki, Y.; Sato, R.; Shiratori, M.; Shibuno, M.; et al. Structure-Activity Relationship of Dihydroimidazo-, Dihydropyrimido, Tetrahydrodiazepino [2,1-b] thiazoles, and - benzothiazoles as an Acylation Catalyst. Tetrahedron Lett. 2014, 55, 1909–1912. https://doi.org/10.1016/j.tetlet.2014.01.135

[5] Godumala, M.; Yoon, J.; Park, S. Y.; Lee, C.; Kim, Y.; Jeong, J.-E.; Park, S.; Woo, H. Y.; Cho, M. J.; Choi, D.H. 5H-Benzo [d] Benzo [4,5] Imidazo [2,1-b][1,3] Thiazine as a Novel Electron- Acceptor Cored High Triplet Energy Bipolar Host Material for Efficient Solution-Processable Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. Front. Chem. 2020, 8, 61. https://doi.org/10.3389/fchem.2020.00061

[6] Godumala, M.; Choi, S.; Cho, M. J.; Choi, D. H. Thermally Activated Delayed Fluorescence Blue Dopants and Hosts: From the Design Strategy to Organic Light-Emitting Diode Applications. J. Mater. Chem. 2016, 4, 11355–11381. https://doi.org/10.1039/C6TC04377A

[7] Slyvka, N.; Saliyeva, L.; Litvinchuk, M.; Shishkina, S.; Vovk, M. Features of (Benzo)Imidazo [2,1-b][1,3] thiazine Mezylates Reaction with Nucleophilic Reagents. Chem. Chem. Technol. 2023, 17, 542–548. https://doi.org/10.23939/chcht17.03.542

[8] Ibeanu, F. N.; Ezeokonkwo, M. A.; Onoabedje, E. A.; Eze, C. C.; Godwin-Nwakwasi, E. U.; Okoro, U. C. Synthesis, Antimicrobial and Computational Studies of New Branched Azaphenothiazinones Derivatives. Chem. Chem. Technol. 2023, 17, 786–795. https://doi.org/10.23939/chcht17.04.786

[9] Abdel Moty, S. G.; Hussein, M. A.; Abdel Aziz, S. A.; Abou- Salim, M. A. Design and Synthesis of Some Substituted Thiazolo [3,2-a] pyrimidine Derivatives of Potential Biological Activities. Saudi Pharm. J. 2016, 24, 119–132. https://doi.org/10.1016/j.jsps.2013.12.016

[10] Keshari, A. K.; Singh, A. K.; Saha, S. Bridgehead Nitrogen Thiazolo [3,2-a] pyrimidine: A Privileged Structural Framework in Drug Discovery. Mini Rev. Med. Chem. 2017, 17, 1488–1499. https://doi.org/10.2174/1389557517666170216142113

[11] Islam, M. R.; Fahmy H. Thiazolopyrimidine Scaffold as a Promising Nucleus for Developing Anticancer Drugs: A Review Conducted in Last Decade. Anti-Cancer Agents Med. Chem. 2022, 22, 2942–2955. https://doi.org/10.2174/1871520622666220411110528

[12] Leysen, J. E.; Van Gompel, P.; Gommeren, W.; Woestenborghs, R.; Janssen, P. A. J. Down Regulation of Serotonin-S2 Receptor Sites in Rat Brain by Chronic Treatment with the Serotonin-S2 Antagonists: Ritanserin and Setoperone. Psychopharmacology 1986, 88, 434–444. https://doi.org/10.1007/BF00178504

[13] Jin, C.-H.; Jun, K.-Y.; Lee, E.; Kim, S.; Kwon, Y.; Kim, K.; Na, Y. Ethyl 2-(benzylidene)-7-methyl-3-oxo-2,3-dihydro-5H- thiazolo [3,2-a] pyrimidine-6-carboxylate Analogues as a New Scaffold for Protein Kinase Casein Kinase 2 Inhibitor. Bioorg. Med. Chem. 2014, 22, 4553–4565. https://doi.org/10.1016/j.bmc.2014.07.037

[14] Nobe, K.; Miyatake, M.; Nobe, H.; Sakai, Y.; Takashima, J.; Momose, K. Novel Diacylglycerol Kinase Inhibitor Selectively Suppressed an U46619-induced Enhancement of Mouse Portal Vein Contraction under High Glucose Conditions. Brit. J. Pharmacol2004, 143, 166–178. https://doi.org/10.1038/sj.bjp.0705910

[15] Batool, I.; Saeed, A.; Qureshi, I. Z.; Kalsoom, S.; Razzaq, A. Synthesis, Molecular Docking and Biological Evaluation of New Thiazolopyrimidine Carboxylates as Potential Antidiabetic and Antibacterial Agents. Res. Chem. Intermed. 2016, 42, 1139–1163. https://doi.org/10.1007/s11164-015-2078-2

[16] Devineni, S. R.; Madduri, T. R.; Chamarthi, N. R.; Liu, C.-Q.; Pavuluri, C. M. An Efficient Microwave-Promoted Three- Component Synthesis of Thiazolo [3,2-a] Pyrimidines Catalyzed by SiO2–ZnBr2 and Antimicrobial Activity Evaluation. Chem. Heterocycl. Compd. 2019, 55, 266–274. https://doi.org/10.1007/s10593-019-02452-2

[17] Bhalgat, C. M.; Ramesh, B. Synthesis, Antimicrobial Screening and Structure-Activity Relationship of Novel Pyrimidines and their Thioethers. Bull. Fac. Pharm. Cairo Univ. 2014, 52, 259–267. https://doi.org/10.1016/j.bfopcu.2014.08.001

[18] Danel, K.; Pedersen, E.B.; Nielsen, C. Synthesis and Anti-HIV- 1 Activity of Novel 2,3-Dihydro-7H-thiazolo [3,2-a] pyrimidin-7- ones. J. Med. Chem. 1998, 41, 191–198.https://doi.org/10.1021/jm970443m

[19] Hassan, G. S. Synthesis and Antitumor Activity of Certain New thiazolo [2,3-b] Quinazoline and thiazolo [3,2-a] Pyrimidine Analogs. Med. Chem. Res. 2014, 23, 388–401. https://doi.org/10.1007/s00044-013-0649-6

[20] Nagarapu, L.; Vanaparthi, S.; Bantu, R.; Kumar, C. G. Synthesis of Novel benzo[4,5]Thiazolo[1,2-a]pyrimidine-3- carboxylate Derivatives and Biological Evaluation as Potential Anticancer Agents. Eur. J. Med. Chem. 2013, 69, 817–822. https://doi.org/10.1016/j.ejmech.2013.08.024

[21] Tozkoparan, B.; Ertan, M.; Kelicen, P.; Demirdamar, R. Synthesis and Anti-Inflammatory Activities of Some Thiazolo [3,2- a] Pyrimidine Derivatives. Il Farmaco 1999, 54, 588–593. https://doi.org/10.1016/S0014-827X(99)00068-3

[22] Selvam, T. P.; Karthik, V.; Kumar, P. V.; Ali, M. A. Design, Synthesis, Antinociceptive, and Anti-Inflammatory Properties of Thiazolopyrimidine Derivatives. Toxicol. Environ. Chem. 2012, 94, 1247–1258. https://doi.org/10.1080/02772248.2012.703204

[23] Jeanneau-Nicolle, E.; Benoit-Guyod, M.; Namil, A.; Leclerc, G. New Thiazolo [3,2-a] Pyrimidine Derivatives, Synthesis and Structure-Activity Relationships. Eur. J. Med. Chem. 1992, 27, 115–120. https://doi.org/10.1016/0223-5234(92)90099-M

[24] Hecht, D. W. Prevalence of Antibiotic Resistance in Anaerobic Bacteria: Worrisome Developments. Clin. Infect. Dis. 2004, 39, 92–97. https://doi.org/10.1086/421558

[25] Moore, B. S.; Carter, G. T., Bronstup, M. Editorial: Are Natural Products the Solution to Antimicrobial Resistance? Nat. Prod. Rep. 2017, 34, 685–686. https://doi.org/10.1039/C7NP90026K

[26] Battin, E. E.; Brumaghim, J. L. Antioxidant Activity of Sulfur and Selenium: A Review of Reactive Oxygen Species Scavenging, Glutathione Peroxidase, and Metal-Binding Antioxidant Mechanisms. Cell. Biochem. Biophys  2009, 55, 1–23. https://doi.org/10.1007/s12013-009-9054-7

[27] Fatiha, M.; Abdelkader, T. Study of Antioxidant Activity of Pyrimidinium Betaines by DPPH Radical Scavenging Method. J. Anal. Pharm. Res. 2019, 8, 33–36. https://doi.org/10.15406/japlr.2019.08.00308

[28] Gülçin, Ì.; Şat, İ. G.; Beydemir, Ş.; Elmastaş, M.; Küfrevioǧlu, Ö. İ. Comparison of Antioxidant Activity of Clove (Eugenia caryophylata Thunb) Buds and Lavender (Lavandula stoechas L.). Food Chem. 2004, 87, 393–400.https://doi.org/10.1016/j.foodchem.2003.12.008

[29] Gülçin, İ. The Antioxidant and Radical Scavenging Activities of Black Pepper (Piper nigrum) Seeds. Int. J. Food Sci. Nutr. 2005, 56, 491–499. https://doi.org/10.1080/09637480500450248

[30] Mukwevho, E.; Ferreira, Z.; Ayeleso, A. Potential Role of Sulfur-Containing Antioxidant Systems in Highly Oxidative Environments. Molecules 2014, 19, 19376–19389. https://doi.org/10.3390/molecules191219376

[31] Djukic, M.; Fesatidou, M.; Xenikakis, I.; Geronikaki, A.; Ange- lova, V.T.; Savic. V.; Pasic, M.; Krilovic, B.; Djukic, D.; Gobeljic, B.; et al. In vitro Antioxidant Activity of Thiazolidinone Derivatives of 1,3-Thiazole and 1,3,4-Thiadiazole. Chem. Biol. Interact. 2018, 286, 119–131. https://doi.org/10.1016/j.cbi.2018.03.013

[32] Chaban, T.; Ogurtsov, V.; Mahlovanyy, A.; Sukhodolska, N.; Chaban, I.; Harkov, S.; Matiychuk, V. Antioxidant Properties of Some Novel Derivatives thiazolo[4,5-b]Pyridine. Pharmacia 2019, 64, 171–180. https://doi.org/10.3897/pharmacia.66.e36764

[33] Kumar, M.; Sharma. K.; Samarth, R. M.; Kumar, A. Synthesis and Antioxidant Activity of Quinolinobenzothiazinones. Eur. J. Med. Chem. 2010, 45, 4467–4472.https://doi.org/10.1016/j.ejmech.2010.07.006

[34] Talaz, O.; Gülçin, İ.; Göksu, S.; Saracoglu, N. Antioxidant Activity of 5,10-Dihydroindeno [1,2-b] indoles Containing Substituents on Dihydroindeno Part. Bioorg. Med. Chem. 2009, 17, 6583–6589. https://doi.org/10.1016/j.bmc.2009.07.077

[35] Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Cremonini, M.A.; Placucci, G.; et al. New Isatin Derivatives with Antioxidant Activity. Eur. J. Med. Chem. 2010, 45, 1374–1378.https://doi.org/10.1016/j.ejmech.2009.12.035

[36] Pokorný, J. Are Natural Antioxidants Better – and Safer – than Synthetic Antioxidants? Eur. J. Lipid Sci. Technol. 2007, 109, 629– 642. https://doi.org/10.1002/ejlt.200700064

[37] Stoia, M.; Oancea, S. Low-Molecular-Weight Synthetic Antioxidants: Classification, Pharmacological Profile, Effectiveness and Trends. Antioxidants 2022, 11, 638. https://doi.org/10.3390/antiox11040638

[38] García-Báez, E. V.; Padilla-Martínez, I. I.; Tamay-Cach, F.; Cruz, A. Benzothiazoles from Condensation of o-Aminothiophenoles with Carboxylic Acids and Their Derivatives: A Review. Molecules 2021, 26, 6518. https://doi.org/10.3390/molecules26216518

[39] Shainyan, B. A.; Zhilitskaya, L. V.; Yarosh, N. O. Synthetic Approaches to Biologically Active C-2-Substituted Benzothiazoles. Molecules 2022, 27, 2598. https://doi.org/10.3390/molecules27082598

[40] Ammazzalorso, A.; Carradori, S.; Amoroso, R.; Fernández, I. F. 2-Substituted Benzothiazoles as Antiproliferative Agents: Novel Insights on Structure-Activity Relationships. Eur. J. Med. Chem2020, 207, 112762. https://doi.org/10.1016/j.ejmech.2020.112762  

[41] Asiri, Y. I.; Alsayari, A.; Muhsinah, A. B.; Mabkhot, Y. N.; Hassan, M. Z. Benzothiazoles as Potential Antiviral Agents. J. Pharm. Pharmacol. 2020, 72, 1459–1486. https://doi.org/10.1111/jphp.13331

[42] Mohareb, R. M.; Abbas, N. S.; Abdelaziz, M. A. Heterocyclic Ring Extension of Androstenedione: Synthesis and Cytotoxicity of Fused Pyran, Pyrimidine and Thiazole Derivatives. Steroids 2014, 86, 45–55. https://doi.org/10.1016/j.steroids.2014.04.011

[43] Saliyeva, L. N.; Diachenko, I. V.; Vas’kevich, R. I.; Slyvka, N. Yu.; Vovk, M. V. Imidazothiazoles and their Hydrogenated Analogs: Methods of Synthesis and Biomedical Potential. Chem. Heterocycl. Compd. 2020, 56, 1394–1407. https://doi.org/10.1007/s10593-020-02827-w

[44] Yakovenko, G. G.; Saliyeva, L. N.; Vovk, M. V. 5(4)-Aminopyrazoles as Effective Reagents in the Synthesis of Pyrazolo-Annulated Pyridines. Chem. Heterocycl. Compd. 2022, 58, 159–177. https://doi.org/10.1007/s10593-022-03069-8

[45] Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J. N. Biginelli Reaction: An Overview. Tetrahedron Lett. 2016, 57, 5135–5149. https://doi.org/10.1016/j.tetlet.2016.09.047

[46] Heravi, M. M.; Asadi, S.; Lashkariani, B. M. Recent Progress in Asymmetric Biginelli Reaction. Mol. Divers. 2013, 17, 389–407. https://doi.org/10.1007/s11030-013-9439-9

[47] Sandhu, S.; Sandhu, J. Past, Present and Future of the Biginelli Reaction: A Critical Perspective. ARKIVOC 2012, 2012, 66. https://doi.org/10.3998/ark.5550190.0013.103

[48] Singh, S.; Schober, A.; Gebinoga, M.; Groß, G. A. Convenient Method for Synthesis of Thiazolo [3,2-a] Pyrimidine Derivatives in a One-Pot Procedure. Tetrahedron Lett. 2011, 52, 3814–3817. https://doi.org/10.1016/j.tetlet.2011.05.067

[49] Nagarajaiah, H.; Begum, N. S. Synthesis and Characterization of 5-(4-Hydroxy-3-methoxy-phenyl)-3,7-dimethyl-5H-thiazolo [3,2- a] pyrimidine-2,6-dicarboxylic Acid 2-Ethyl Ester 6-Methyl Ester and Its 6-Ethyl Ester 5-Naphthalene Derivative. J. Saudi Chem. Soc. 2015, 19, 634–641. https://doi.org/10.1016/j.jscs.2012.05.006

[50] Yakovychuk, N. D.; Deyneka, S. Y.; Grozav, A. M.; Humenna, A. V.; Popovych, V. B.; Djuiriak, V. S. Аntifungal Activity of 5-(2- Nitrovinyl)imidazoles and their Derivatives Against the Causative Agents of Vulvovaginal Candidiasis. Regulatory Mechanisms in Biosystems 2018, 9, 369–373. https://doi.org/https://doi.org/10.15421/021854

[51] Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT – Food Sci. Technol. 1995, 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

[52] Litvinchuk, M. B.; Bentya, A. V.; Slyvka, N. Y.; Vovk, M. V. The Synthesis and Cyclofunctionalization of (1,3-Thiazolidin-2- ylidene)ketones. J. Org. Pharm. Chem. 2018, 16, 18–27. https://doi.org/10.24959/ophcj.18.951

[53] Foti, M. C. Antioxidant Properties of Phenols. J. Pharm. Phar- macol. 2007, 59, 1673–1685. https://doi.org/10.1211/jpp.59.12.0010