В статті наведені витратні характеристики дросельних елементів, які застосовують у вимірювальних схемах перетворювачів параметрів плинних середовищ. Огляд включає широке коло досліджень характеристик нестискуваних та стискуваних, ньютонівських та неньютонівських середовищ в умовах ламінарного, перехідного та турбулентного режиму руху в каналах різного поперечного перерізу. Розглянуто рівняння, що застосовуються для макроскопічних потоків. Наведено теоретичні рівняння для розрахунку перепаду тиску під час руху середовищ у мікроканалах та зазначено умови та діапазон їх застосування. Розглянуто експериментальні результати дослідження коефіцієнтів тертя для стискуваних і нестискуваних середовищ в мікроканалах різних розмірів та форми, з гладкими і шорсткими поверхнями. Отримані результати можна застосовувати для комп’ютерного дослідження статичних і метрологічних характеристик газогідродинамічних вимірювальних перетворювачів конкретних фізико-механічних параметрів.
- Profos, P., Pfeifer, T. (1994) Handbuch der Industriellen Meßtechnik. Wissenschaftsverlag, Oldenbourg.
- Webster, J., Eren, H. (2014) Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement, Second Edition, CRC Press Reference.
- Pistun, Ye. (1985) Theoretical Foundations for Constructing and Calculating Gas-Hydrodynamic Throttle Measuring Transducers. Abstracts of the XV All-Union Conference “Pnevmoavtomatika”, P.1, Lvov, 104–105. (in Russian)
- Pistun, Ye., Leskiv, H. (2002) Gas-hydrodynamic Measuring Transducers Built on Complex Throttle Elements. Proc. of Lviv Polytechnic National University: Heat Power Engineering. Environmental Engineering. Automation, 460, 81–88. (in Ukrainian)
- Pistun, Ye., Krykh, H., Leskiv, H. (2003) Modeling of Gas-hydrodynamic Measuring Transducers Built on Bridge Throttle Schemes with Constant Flowrate. Scientific and technical journal “Methods and instruments of quality control”, 10, 87–89. (in Ukrainian)
- Pistun, Ye., Matiko, H., Krykh, H., Matiko, F. (2018) Structural Modeling of Throttle Diagrams for Measuring Fluid Parameters. Metrology аnd Measurement Systems. 25(4), 659–673. DOI: 10.24425/mms.2018.124884
- Pistun E. P., Stasiuk I. D., Tepliukh Z. M. (1985) Investigation of Flowrate Curves of Capillary Elements of Measurement Instruments // Control and Measurement Instrumentation. 38, 44–46. (in Russian)
- Pistun, Ye., Matiko, H., Krykh, H. (2016) Modelling of Measuring Transducers Schemes Using Set Theory. Metrology and instruments, 3, 53–61. (in Ukrainian)
- Pistun, Ye., Matiko, H., Krykh, H., Matiko, F. (2017) Synthesizing the Schemes of Multifunctional Measuring Transducers of the Fluid Parameters. Eastern-European Journal of Enterprise Technologies, 6, 5(90), 13–22. https://doi.org/10.15587/1729-4061.2017.114110
- Poling, B., Prausnitz, J., O' Connell, J. (2000) The Properties of Gases and Liquids. McGraw-Hill Education.
- Zalmanzon, L. (1973) Aero-Hydrodynamic Methods for Measuring the Input Parameters of Automatic Systems. Science, Moscow. (in Russian)
- Ibragimov, I., Farzane, N., Ilyasov, L. (1985) Elements and Systems of Pneumatic Automation. Higher school, Moscow. (in Russian)
- Nagornyi, V. (2014) Means of Automation of Hydraulic and Pneumatic Systems. Tutorial. Publishing house “Lan”. (in Russian)
- Kremlevskyi, P. (2002) Flowmeters and Meters of Substances. Publishing House “Polytechnic”. (in Russian)
- Kabza, Z. (1981) Mathematical Modeling of Flowmeters with Constricting Devices. Mechanical Engineering, Leningrad. (in Russian)
- ISO 5167-1:2003. Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full – Part 1: General Principles and Requirements.
- Pistun, Ye., Lesovoi, L. (2006) Standardization of Pressure Differential Flowmeters. CJSC "Institute of Energy Audit and Energy Resources", Lviv. (in Ukrainian)
- Pistun, Ye., Tepliukh, Z., Stasiuk, I. (1986) Flow Characteristics of Gas-Dynamic Throttle Elements. In Book: Pneumatic and Hydraulic Devices and Control Systems. X International Conference “Jablonna”, Energoatomizdat, 31–34. (in Russian)
- Stasiuk, I. (2015) Gas Dynamical Capillary Flowmeters of Small and Micro Flowrates of Gases, Energy Engineering and Control Systems, 1 (2), 117–126. https://doi.org/10.23939/jeecs2015.02.117
- Tepliukh, Z., Pistun, Ye. (1978) Using Various Functional Dependencies to Describe Flow Characteristics of Turbulent Throttles, Measurement Techniques, 2, 231–234. (Translated from Izmeritel'naya Tekhnika, No. 2, pp. 48–50 by Plenum Publishing Corporation, February, 1977.)
- Gornstein, B. (1979) Determining of Gas Flow Through a Capillary, Metrology, 1, 66–74. (in Russian)
- Walicka, A. (2018) Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Capillary Fissures and Tubes. Int. J. of Applied Mechanics and Engineering, 23 (1), 187–211. https://doi.org/10.1515/ijame-2018-0011
- Steffе, J. (1996) Rheological Methods in Food Process Engineering, USA, Freeman Press.
- Krykh, H. (2008) Mathematical Models of Throttle Elements of Hydrodynamic Measuring Transducers of Non-Newtonian Liquid Parameters. Proc. of Lviv Polytechnic National University: Heat Power Engineering. Environmental Engineering. Automation, 617, 122–129. (in Ukrainian)
- Venerus, D. (2006) Laminar Capillary Flow of Compressible Viscous Fluids. Journal Fluid Mechanics, 555, 59–80. https://doi.org/10.1017/S0022112006008755
- Malkin, A., Isayev, A. (2017) Rheology: Concepts, Methods and Applications. Chemical Technology Publishing House.
- Drevetskyi, V. (2012) Mathematical Models of Throttle Transducers for Hydrodynamic Measuring Devices of Viscosity and Density of Liquids. Methods and Instruments of Quality Control, 29, 38–46. (in Ukrainian)
- Karniadakis, G., Beskok, A., Aluru, N. (2002) Microflows. Fundamentals and Simulation. https://doi.org/10.1115/1.1483361
- Sharp, K., Adrian, R., Santiago, J., Molho, J. (2005) MEMS: Background and Fundamentals. Chapter 10: Liquid Flows in Microchannels, 10-1–10-45.
- Cao, B., Chen, G., Li, Y., Yuan, Q. (2006) Numerical Analysis of Isothermal Gaseous Flows in Microchannel. Chemical Engineering Technology, 29 (1), 66–71. https://doi.org/10.1002/ceat.200407079
- Hetsroni, G., Mosyak, A., Pogrebnyak, E., Yarin, L. (2005) Fluid Flow in Micro-Channels International. Journal of Heat and Mass Transfer, 48, 1982–1998. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.019
- Guangwen, Y., Yuan , Ch. (2014) Effect of Viscosity on the Hydrodynamics of Liquid Processes in Microchannels. Chemical Engineering Technology, 37 (3), 427–434. https://doi.org/10.1002/ceat.201300468
- Bucci, A., Celata, G., Cumo, M., Serra, E., Zummo, G. (2003) Water Single-Phase Fluid Flow and Heat Transfer in Capillary Tubes. Conference ASME 2003, 1st International Conference on Microchannels and Minichannels, 319–326. https://doi.org/10.1115/ICMM2003-1037
- Kim, M., Araki T., Inaoka, K., Suzuki, K. (2000) Gas Flow Characteristics in Microtubes. JSME International Journal Series B, 43 (4),634–639. https://doi.org/10.1299/jsmeb.43.634
- Tang, G., Li, Zh., He, Y., Tao, W. (2007) Experimental Study of Compressibility, Roughness and Rarefaction Influences on Microchannel Flow. International Journal of Heat and Mass Transfer, 50, 2282–2295. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.034
- Taliadoroua, E., Georgioua, G., Moulitsas, I. (2009) Weakly Compressible Poiseuille Flows of a Herschel–Bulkley Fluid. Journal Non-Newtonian Fluid Mechanics, 158, 162–169. https://doi.org/10.1016/j.jnnfm.2008.11.010
- Liu, D., Garimella, S. (2004) Investigation of Liquid Flow in Microchannels. AIAA Journal of Thermophysics and Heat Transfer. 18 (1), 65–72. https://doi.org/10.2514/1.9124
- Obot, N. (2000) Toward a Better Understanding of Friction and Heat/Mass Transfer in Microchannels – A Literature Review. United Engineering Foundation Conference, Heat Transfer and Transport Phenomena in Microsystems, Oct. 15-20, 2000, Banff, Alberta, 1–8.
- Harley, J., Huang, Y., Bau, H., Zemel, J. (1994) Gas Flow in Micro-Channels. Journal of Fluid Mechanics, 284, 257–274. https://doi.org/10.1017/S0022112095000358
- Cai, Ch., Sun, Q., Boyd, I. (2007) Gas Flows in Microchannels and Microtubes. Fluid Mechanics, 589, 305–314. https://doi.org/10.1017/S0022112007008178
- Taliadoroua, E., Neophytou, M., Georgiou, G. (2009) Perturbation Solutions of Poiseuille Flows of Weakly Compressible Newtonian Liquids, Journal of Non-Newtonian Fluid Mechanics, 163, 1-3, 25–34. https://doi.org/10.1016/j.jnnfm.2009.06.003
- Teng, J., Chu, J., Yu, X., Dang, Th., Lee, M. et al. Fluid Dynamics, Computational Modeling and Applications. Chapter – Fluid Dynamics in Microchannels, 403–436.
- Zhang, X., Zhu, W., Cai, Q., Shi, Y. Wu, X. Jin, T. Yang, L., Song, H. (2018) Compressible Liquid Flow in Nano- or Micro-Sized Circular Tubes Considering Wall–Liquid Lifshitz–Van Der Waals Interaction. Physics of Fluids, 30, 062002. https://doi.org/10.1063/1.5023291
- Bahrami, M., Yovanovich, M. and Culham, J. (2005) Pressure Drop of Fully Developed, Laminar Flow in Rough Microtubes. Journal of Fluids Engineering, 128 (3), 632–637. https://doi.org/10.1115/1.2175171
- Silva, G., Leal, N. Semião, V. (2008) Effect of Wall Roughness on Fluid Flow Inside a Microchannel. 14th Int Symp on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 07-10 July, 2008, 1–12.
- Celata, G., Cumo, M., McPhail, S., Tesfagabir, L., Zummo, G. (2007) Experimental Study on Compressible Flow in Microtubes. International Journal of Heat and Fluid Flow, 28, 28–36. https://doi.org/10.1016/j.ijheatfluidflow.2006.04.009
- Mortensen, N., Okkels, F., Bruus, H. (2005) Reexamination of Hagen–Poiseuille flow: Shape Dependence of the Hydraulic Resistance in Microchannels. Physical Review, E. Statistical Nonlinear and Soft Matter Physics, 71(5), 057301, 1–5. https://doi.org/10.1103/PhysRevE.71.057301
- Bulhakov, B., Kubrak, A. (1977) Pneumatic Automation, Tehnika, Kyjiv. (in Russian)
- RD 50-411-83. (1984) Methodical Instructions. Flowrate of Liquids and Gases. Technique for Measuring Using Special Constricting Devices. Publishing House of Standards, Moscow. (in Russian)
- Pistun, Ye., Teplykh, Z., Stasyuk, I. (1984) Watch Jewels in Gas Microflow Measurement, Measurement Techniques, 11, 929–931 (Translated from Izmeritel'naya Tekhniya, No. 11, pp. 36–38 by Plenum Publishing Corporation, November, 1983.) https://doi.org/10.1007/BF00827554