Виділено явище, присутнє майже при кожному пострілі. Воно проявляється в дульному викиді у вигляді деякого об'єму сажі. Визначена термохімічна реакція Будуара-Белла, що пояснює утворення сажі в порохових газах в процесі пострілу. Виділені умови можливості її прояву. Розроблено метод розв’язання задачі внутрішньої балістики з можливістю визначення температури порохових газів по довжині ствола гармати в різні моменти часу і при різному положенні снаряда в стволі. Проведено моделювання розподілу температури порохових газів в просторі ствола гармати між зарядною коморою і снарядом, що рухається, в модельній системі. Показана можливість зміни протяжності зони протікання реакції Будуара-Белла(зони утворення сажі) залежно від початкових даних. Моделювалося використання свіжого порохового заряду і заряду, що деградував.
- Dobrynin E., Maksymov M., Boltenkov V. (2020). Development of a Method for Determining the Wear of Artillery Barrels by Acoustic Fields of Shots. Eastern–European Journal of Enterprise Technologies. Vol 3, No 5 (105), 2020, p.6–18. https://doi.org/10.15587/1729-4061.2020.206114
- Dobrynin Y., Volkov V., Maksymov M., Boltenkov V. (2020). The Development of Physical Models for Acoustic Wave Formation at the Artillery Shot and Study of Possibilities for Separate Registration of Various Types Waves. Eastern–European Journal of Enterprise Technologies. Vol 4, No 5 (106), 2020, p.6–15 https://doi.org/10.15587/1729-4061.2020.209847
- Serebryakov M. E. (1962). Internal ballistics of barrel systems and powder rockets. Moscow, 702. (in Russian)
- Carlucci D.E., Jacobson S.S. (2008). Ballistics : theory and design of guns and ammunition. Taylor & Francis Group, 2008, pp. 502. ISBN-13: 978-1-4200-6618-0; ISBN-10: 1-4200-6618-8; http://www.taylorandfrancis.com
- Rashad M.M., Zhang X.B., Elsadek H. (2013). Numerical simulation of interior ballistics for large caliber guided projectile naval gun. Journal of Engineering and Applied Science Vol. 60, No. 2, 2013, pp.163-176. https://www.researchgate.net/publication/264786882
- Jang J., Oh S., Roh T. (2016). Development of three-dimensional numerical model for combustion-flow in interior ballistics. Journal of Mechanical Science and Technology. Vol 30, 2016, pp. 1631-1637. https://doi.org/10.1007/s12206-016-0319-y
- Cheng C., Zhang X. (2013). Modeling of Interior Ballistic Gas-Solid Flow Using a Coupled Computational Fluid Dynamics-Discrete Element Method. ASME.J. Appl. Mech. 2013; 80(3): 031403. https://doi.org/10.1115/1.4023313
- Li P., Zhang X. (2020). Numerical research on adverse effect of muzzle flow formed by muzzle brake considering secondary combustion. Defence Technology. 2020, ISSN 2214-9147, https://doi.org/10.1016/j.dt.2020.06.019.
- Steward B.J., Perram G.P., Gross K.C. (2011). Visible and Near-Infrared Spectra of the Secondary Combustion of a 152 mm Howitzer. Applied Spectroscopy. 2011; 65(12):1363-1371. https://doi.org/10.1366/11-06445
- Steward B.J., Bauer K.W., Perram G.P. (2012). Remote discrimination of large-caliber gun firing signatures. J. Appl. Rem. Sens. 6(1) 063607, 2012 https://doi.org/10.1117/1.JRS.6.063607
- Steward B.J., Gross K.C., Perram G.P. (2011). Reduction of optically observed artillery blast wave trajectories using low dimensionality models. Proc. SPIE 8020, Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications VIII, 80200D, 2011; https://doi.org/10.1117/12.883524
- Zakharenkov V.F. (2010). Interior ballistics and automation of artillery gun design. Tutorial. Balt. state tech. un-t. - SPb., 2010, 276 p. ISBN 978-5-85546-580-8, https://ua1lib.org/book/3064917/757a40?id=3064917&secret=757a40
- Li X., Mu L., Zang Y., Qin Q. (2020). Study on performance degradation and failure analysis of machine gun barrel, Defence Technology, Volume 16, Issue 2, 2020, Pages 362-373, ISSN 2214-9147, https://doi.org/10.1016/j.dt.2019.05.008.
- Kriukov O., Melnikov R., Bilenko О., Zozulia A., Herasimov S., Borysenko M., Pavlii V., Khmelevskiy S., Abramov D., & Sivak V. (2019). Modeling of the process of the shot based on the numerical solution of the equations of internal ballistics. Eastern-European Journal of Enterprise Technologies, 1/5 (97), 40–46. https://doi.org/10.15587/1729-4061.2019.155357
- Rout K.R., Gil M.V., Chen D. (2019). Highly selective CO removal by sorption enhanced Boudouard reaction for hydrogen production. Catalysis Science & Technology, 2019, Vol. 9, Issue 15, p. 4100–4107. https://doi.org/10.1039/C9CY00851A
- Krylova A.Y. (2014). Products of the Fischer-Tropsch synthesis. Solid Fuel Chem. 48, 22–35 (2014). https://doi.org/10.3103/S0361521914010030
- Kogler M., Köock E.-M., Klöotzer B., Schachinger T., Wallisch W., Henn R., Huck C.H., Hejny C., Penner C. (2016). High-temperature carbon deposition on oxide surfaces by CO disproportionation. J. Phys. Chem. C 3(120), 1795–1807 (2016). https://doi.org/10.1021/acs.jpcc.5b12210
- Mianowski A., Robak Z., Tomaszewicz M. et al. (2012). The Boudouard–Bell reaction analysis under high pressure conditions. J Therm Anal Calorim 110, 93–102 (2012). https://doi.org/10.1007/s10973-012-2334-2
- Brunetkin O., Maksymov M. V., Maksymenko A., Maksymov M. M. (2019). Development of the unified model for identification of composition of products from incineration, gasification, and slow pyrolysis. Eastern-European Journal of Enterprise Technologies. – 2019. – 4/6 (100). – P. 25–31 DOI: https://doi.org/10.15587/1729-4061.2019.176422
- Burnham A.K., Fried L.E. (2006). Kinetics of PBX9404 aging. UCRL-CONF-224391. 7th aging, compatibility and stockpile stewardship conference. Los Alamos, NM, USA. September 26, 2006 – September 28, 2006. – 6 p. https://www.osti.gov/biblio/894349-kinetics-pbx9404-aging
- Anipko O.B., Khaykov V.L. (2012). Methods analysis for assessment of propellant charges as a part of the artillery ammunition monitoring system Integrated Technologies and Energy Conservation, NTU “KhPI”, 3, 2012. pp. 60–71. http://repository.kpi.kharkov.ua/handle/KhPI-Press/2199
- Alemasov V.E., Glushko V. (1974). Thermodynamic and thermophysical properties of combustion products = Termodinamicheskie i teplofizicheskie svoistva produktov sgoraniya : translated from Russian [by R. Kondor, and Ch. Nisenbaum], Jerusalem : Israel Program for Scientific Translations, 1974-1976. https://searchworks.stanford.edu/view/892711
- Rusyaka I.G., Tenenevb V.А. (2020). Modeling of ballistics of an artillery shot taking into account the spatial distribution of parameters and backpressure. Computer research and modeling, 2020, Vol. 12, № 5 p. 1123-1147 https://doi.org/10.20537/2076-7633-2020-12-5-1123-1147
- Pelykh S.N., Maksimov M.V., Baskakov V.E. (2008). Model of cladding failure estimation under multiple cyclic reactor power changes, The 2-nd International Conference ’Current Problems in Nuclear Physics and Atomic Energy’. Book of abstracts 2008, p. 638-641, https://inis.iaea.org/search/search.aspx?orig_q=RN:40062726.
- Brunetkin O., Davydov V., Butenko O., Lysiuk G., Bondarenko A. (2019). Determining the composition of burned gas using the method of constraints as a problem of model interpretation. Eastern-European Journal of Enterprise Technologies. – 2019. – 3/6 (99). – P. 22–30. https://doi.org/10.15587/1729-4061.2019.169219