A mathematical model for determining the temperature of an electrically conductive plate element under the action of pulsed electromagnetic radiation of the radio-frequency range is proposed. This model allows us to take into account the influence of the process of thermoelastic energy dissipation on the forecasting of the value of temperature in addition to the joule heat. This process is determined by thermal expansion and the action of poendromotive forces arising in the element. This approach allows us to predict a decrease in the error of temperature determination. On this basis, the distributions of temperature in an electrically conductive plate element under the action of an amplitude-modulated radio pulse have been investigated numerically. Thermoelastic energy dissipation is taken into account when using the frequencies of the carrying electromagnetic oscillations beyond the resonant frequencies and of the first resonant frequency of the electromagnetic field for this element. An estimate of the influence of the process of taking into account mechanisms of energy dissipation on the total value of temperature in the element at the specified action and used frequencies is obtained. This has allowed us to increase the accuracy of temperature measurements in this element.
- Batygin Yu. V., Lavinsky V. I., Khimenko L. T. Impul'snyje magnitnyje polja dlja progresivnyh tehnologij. Kharkiv, MOST–Tornado (2003), (in Russian).
- Podstrigach Ya. S., Burak Ya. I., Gachkevich A. R., Chernyavskaya L. V. Termouprugost' elektroprovodnyh tel. Kiev, Naukova Dumka (1977), (in Russian).
- Musiy R. S. Dynamichni zadachi termomehaniky electroprovidnyh til kanonichnoji formy. Lviv, Rastr-7 (2010), (in Ukrainian).
- Gachkevich O. R., Musiy R. S., Tarlakovsky D. V. Termomehanika neferromagnitnyh electroprovidnyh til za diji impul'snyh elektromagnitnyh poliv z amplitudnoju moduljatsijeju. Lviv, SPOLOM (2011), (in Ukrainian).
- Lykov A. V. Teorija teploprovodnosti. Moskva, Vysshaja shkola (1967), (in Russian).
- Lutsyk Ja. T., Hook O. P., Lakh O. I., Stadnyk B. I. Vymirjuvannja temperatury: teorija i praktyka. Lviv, Vydavnytstvo "Beskid-Bit" (2006), (in Ukrainian).
- Motovilovets I. A., Kozlov V. I. Termouprugost'. Kiev, Naukova Dumka (1987). Mechanics of related fields in structural elements: in 5 vols. Vol. 1 (in Russian).
- Gribanov V. F., Panichkin N. G. Krajevyje i dinamicheskije problemy termouprugosti. Moskva, Tehnika (1984), (in Russian).
- Podstrigach Ya. S., Kol'yano Yu. M. Obobshchennaja termomehanica. Кiev, Naukova dumka (1976), (in Russian).
- Knopfel G. Sverhsil'nyje impul'snyje magnitnyje polja. Metody generatsyi i fizicheskije effekty, svjazannyje s sozdaniem impyl'snyh polej megaersctednogo diapazona. Мoskva, Мir (1972), (in Russian).
- Sil'nyje i sverhsil'nyje magnitnyje polja i ih primenenije. Pod red. Herlaha F. Мoskva, Мir (1988), (in Russian).
- Kovalenko A. D. Termouprugost'. Кiev, Naukova dumka (1976), (in Russian).
- Hachkevych O., Musii R. Mathematical modeling in thermomechanics of electroconductive bodies under the action of the pulsed electromagnetic fields with modulation of amplitude. Mathematical Modeling and Computing. 6 (1), 30–36 (2019).
- Musiy R., Melnyk N., Dmytruk V. Investigation of properties of contact connector of bimetallic hollow cylinder under the influence of electromagnetic pulse. Mathematical Modeling and Computing. 5 (2), 193–200 (2018).
- Musii R. S., Melnyk N. B., Dmytruk V. A., Zhydyk U. V. Technological forecast of bearing capacity and properties of contact connection of bimetallic hollow spheres under electromagnetic pulses action. Mathematical Modeling and Computing. 7 (1), 79–87 (2020).