The paper is devoted to the research of vibratory conveying of piece goods along an inclined track, performing harmonic longitudinal and polyharmonic normal vibrations. It is considered the conditions of reaching maximum conveying velocity at specified values of frequency and amplitude of longitudinal vibrations – the conditions of maximum dimensionless conveying velocity, depending on several dimensionless parameters in the moving modes without hopping. These dimensionless parameters are the inclination angle parameter – a ratio of an inclination angle tangent to a frictional coefficient, the intensive vibration coefficient – a ratio of the longitudinal amplitude of vibration to the amplitude of the first harmonic of normal vibration and frictional coefficient. Maximal conveying velocity is achieved at the certain values of normal vibration amplitudes and values of phase difference angles between longitudinal and normal vibrations, which are called optimal, and their values are dependent on these two dimensionless parameters, while maximum normal vibration acceleration should be equal to the gravitational acceleration. The research was made by approximate harmonic balance method and by numerical step-by-step integration method, which allows performing calculations with any given accuracy. The results obtained by the two methods are compared.
To determine the maximal and optimal values of elevation angles, there are calculated the maximal value of the inclination angle parameter at which the value of dimensionless velocity is equal to zero, and the value of the inclination angle parameter at which a particle moves to a specified height in the minimum time. The optimal values of amplitudes of harmonics of polyharmonic normal vibration are determined in dependence on the inclination angle parameter with the number of harmonics from four to seven. The graphs of these dependencies are presented and the most important values of dimensionless parameters are presented in the table.
[1] G. Boothroyd, Assembly automation and product design. London, UK: Taylor and Francis Ltd, 2005. https://doi.org/10.1201/9781420027358
[2] Vibratsiyi v tekhnike: Spravochnik [Vibrations in technics: Reference book], V. N. Chelomey et al., Eds., Vol. 4: Vibratsionnye protsesy i mashyny [Vibration processes and machines], E. E. Lavendel, Ed. Moscow, Russia: Mashinostroyeniye Publ., 1981. [in Russian].
[3] I. Y. Vrublevskyi, “Optymizatsiya parametriv polyharmonichnykh normalnykh kolyvan pid chas bezvidryvnoho vibrotransportuvannia” [“Optimization of parameters of polyharmonic normal vibration in non-hopping vibratory conveying”], Visnyk Natsionalnoho universytety “Lvivska polytekhnika”. Optymizatsiya vyrobnychikh protsesiv i tekhnichnyi control u mashynobuduvanni i pryladobuduvanni [Bulletin of Lviv Polytechnic National University. Optimization of Industrial Processes and Technical Control in Mechanical Engineering and Instrument Making], vol. 613, pp. 89–92, 2008. [in Ukrainian].
[4] I. Y. Vrublevskyi, “Optymalni kuty pidyomu shtuchnykh vantazhiv pry bezvidryvnomu vibrotransportuvanni z poliharmonichnymy normalnymy kolyvanniamy” [“Optimal angles of cargo’s lifting with non-jumping vibratory conveying by polyharmonic normal oscillations”], Avtomatyzatsiya vyrobnychikh protsesiv u mashynobuduvanni ta pryladobuduvanni [Automation of industrial processes in mechanical engineering and instrumentation], vol. 51, pp. 23–26, 2017. [in Ukrainian].
[5] S. Okabe, Y. Yokoyama, J. Jimbo, “Vibratory conveying by elliptical vibration”, Journal of the Japan Society of Precision Engineering, vol. 40, no. 10, pp. 840–845, 1974. https://doi.org/10.2493/jjspe1933.40.840
[6] W. A. Morcos, “On the design of oscillating conveyers – case of simultaneous normal and longitudinal oscillations”, ASME Journal of Engineering for Industry, vol. 92, no.1, pp. 53–61, 1970. https://doi.org/10.1115/1.3427719
[7] N. Dallinger, T. Risch, K. Nendel, “Simulation von Förderprozessen bei Vibrationsförderanlagen” [“Simulation of conveying processes in vibratory conveyors”], Logistics Journal: Proceedings, vol. 2012, pp. 1–5, 2012. [Online]. Available: https://www.logistics-journal.de/proceedings/2012/3426/04-dallinger-wgtl.... Accessed on: September 30, 2020. [in German].
[8] A. Ishizaka, M. Kimura., T. Kotaki, “The vibratory conveyor applied the vibration involving higher harmonics”, Journal of the Japan Society of Precision Engineering, vol. 39, no. 1, pp. 93–98, 1973. https://doi.org/10.2493/jjspe1933.39.93
[9] A. V. Dunayevetsky, “Sintez nezavisimykh biharmonicheskikh kolebaniy dlia bezotryvnoho vibrotransportirovaniya” [“Synthesis of independent biharmonic vibrations for non-hopping vibratory conveying”], Avtomatyzatsiya vyrobnychikh protsesiv u mashynobuduvanni ta pryladobuduvanni [Automation of industrial processes in mechanical engineering and instrumentation], vol. 12, pp. 96–99, 1973. [in Russian].
[10] V. G. Yefimov, “Opredeleniye optimalnykh parametrov poliharmonicheskoho poperechnoho zakona dvizheniya lotka” [“Determination of optimal parameters of polyharmonic transverse law of a track’s moving”], in Voprosy dinamiki i prochnosti [Problems of dynamics and strength]. Riga, Latvia: Zinatne Publ., vol. 34, pp. 28–38, 1977. [in Russian].
[11] E. Lavendel, “Sintez optimalnykh vibromashyn” [“Synthesis of optimal vibratory machines”]. Riga, Latvia: Zinatne Publ., 1970. [in Russian].
[12] I. Y. Vrublevskyi, “The phase difference between components of elliptical oscillations of vibratory conveyor providing maximal conveying velocity”, Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 1, no. 1, pp. 47–54, 2015.
[13] I. Y. Vrublevskyi, “Optimalnye parametry poliharmonicheskikh normalnykh kolebaniy pri dvukhkomponentnom vibrotransportirovaniyi” [“Optimal parameters of polyharmonic normal oscillations with two-component vibratory conveying”], Izvestiya vuzov. Mashinostroyeniye [Proceedings of universities. Mechanical engineering], no. 5, pp. 157–160, 1986. [in Russian].