Інформаційна система прогнозування продажів будівельних матеріалів

2023;
: cc. 1 - 23
1
Національний університет “Львівська політехніка”, кафедра інформаційних систем та мереж, Україна, Львів
2
Національний університет «Львівська політехніка», кафедра інформаційних систем та мереж,
3
Національний університет «Львівська політехніка», кафедра менеджменту і міжнародного підприємництва
4
Університет Оснабрюка, кафедра міжнародної економічної політики
5
Національний університет «Львівська політехніка», кафедра інформаційних систем та мереж

Мета виконання роботи – аналіз особливостей проєктування та розроблення інформаційної системи. Об’єкт дослідження – процес системи прогнозування продажів будівельних матеріалів. Предмет дослідження – методи та  засоби процесу прогнозування продажів асортименту будівельних матеріалів. Відповідно до напрацювань та розрахунків, наведених у статті, а саме аналізу програмних продуктів аналогів та інформації про предметну область, виконано системний аналіз об’єкта та вибір технологічних засобів розроблення загальної структури типової інформаційної системи прогнозування продажів асортименту будівельних матеріалів на торговельному онлайн-майданчику на основі використання нейронної мережі.

  1. Bueno A., Godinho Filho M., Frank A. G. (2020). Smart production planning and control in the Industry 4.0  context: A systematic literature review. Computers & Industrial Engineering, 149, 106774. DOI: 10.1016/j.cie.2020.106774.
  2. Usuga Cadavid J.P., et al. (2020). Machine learning applied in production planning and control: a state-of- the-art in the era of Industry 4.0. J. Intell Manuf 31, 1531–1558. DOI: 10.1007/s10845-019-01531-7.
  3. Fragapane G., De Koster R., Sgarbossa F., Strandhagen J. O. (2021). Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. European Journal of Operational Research, 294(2), 405–426. DOI: 10.1016/j.ejor.2021.01.019.
  4. Bendul J. C., Blunck H. (2019). The design space of production planning and control for industry 4.0. Computers in Industry, 105, 260–272. DOI: 10.1016/j.compind.2018.10.010.
  5. Chofreh A. G., Goni F. A., Klemeš J. J., Malik M. N., Khan H. H. (2020). Development of guidelines for the implementation of sustainable enterprise resource planning systems. Journal of Cleaner Production, 244, 118655. DOI: 10.1016/j.jclepro.2019.118655.
  6. Taghipour M., Shabrang M., Habibi M. H., Shamami N. (2020). Assessment and Analysis of Risk Associated with the Implementation of Enterprise Resource Planning (ERP) Project Using FMEA Technique (Including Case-Study). Management, 3(1), 29–46. DOI: 10.31058/j.mana.2020.32002.
  7. Astuty W., Pratama I., Basir I., Harahap J. P. R. (2022). Does enterprise resource planning lead to the quality of the management accounting information system? Polish Journal of Management Studies, 25(2), 93–107. DOI: 10.17512/pjms.2022.25.2.06.
  8. Mazaraki A., Drozdova Y., Bay S. (2020). Theoretical and methodological principles for assessment the readiness of socio-economic systems for changes. Baltic journal of economic studies, 6(1), 80–86. DOI: 10.30525/2256-0742/2020-6-1-80-86.
  9. Javanmardi E., Liu S. (2019). Exploring grey systems theory-based methods and applications in analyzing socio-economic systems. Sustainability, 11(15), 4192. DOI: 10.3390/su11154192.
  10. Bulturbayevich M. B., Saodat S., Umida J., Shakhnoza N., Feruza, S. (2020). Theoretical and Practical Bases of  Investments  and  Processes  of  Their  Distribution  in  the  Conditions  of  Modernization  of Economy. International Journal on Integrated Education, 3(9), 132–137. DOI: 10.31149/ijie.v3i9.603.
  11. Fuchs C. (2020). Communication and capitalism: A critical theory (p. 406). University of Westminster Press. DOI: 10.16997/book45.
  12. Wlamyr P. A., Davila Perez M. V., Caicedo-Rolon A. J. (2022). Logistics as an added value in Colombia. Journal of Language and Linguistic Studies, 18(4). URL: http://jlls.org/index.php/jlls/article/view/5028/1759.
  13. Agatić A., Tijan E., Hess S., Jugović T. P. (2021). Advanced Data Analytics in Logistics Demand Forecasting. In 44th International Convention on Information, Communication and Electronic Technology (MIPRO), pp. 1387–1392. DOI: 10.23919/MIPRO52101.2021.9596820.
  14. Yan M., Schmit T. M., Baker M. J., LeRoux M. N., Gómez M. I. (2022). Sell now or later? A decision- making model for feeder cattle selling. Agricultural and Resource Economics Review, 51(2), 343–360. DOI: 10.1017/age.2022.1.
  15. Chege S. M., Wang D., Suntu S. L. (2020). Impact of information technology innovation on firm performance in Kenya. Information Technology for Development, 26(2), 316–345. DOI: 10.1080/02681102.2019.1573717.
  16. Jimenez-Jimenez D., Martínez-Costa M., Sanchez Rodriguez C. (2019). The mediating role of supply chain collaboration on the relationship between information technology and innovation. Journal of Knowledge Management, 23(3), 548–567. DOI: 10.1108/JKM-01-2018-0019.
  17. Mehralian M. M. (2022). Identifying and Explaining the Effective Factors of Digital Marketing Strategies in Consumers’ Emotional States and Sales Rates: A Mixed Methods Research. In 20th International Conference of the Business and Strategic Management. DOI: 10.2139/ssrn.4195988.
  18. Ullo S. L., Sinha G. R. (2020). Advances in smart environment monitoring systems using IoT and sensors. Sensors, 20(11), 3113. DOI: 10.3390/s20113113.
  19. Sotnyk I., Hulak D., Yakushev O., Yakusheva O., Prokopenko O. V., Yevdokymov A. (2020). Development of the US electric car market: Macroeconomic determinants and forecasts. Polityka Energetyczna, 23(3), 147–164. URL: https://bibliotekanauki.pl/articles/283581.pdf.
  20. Matseliukh Y., Bublyk M., Vysotska V. (2021). Development of Intelligent System for Visual Passenger Flows Simulation of Public Transport in Smart City Based on Neural Network. In COLINS, pp. 1087–1138.
  21. Bublyk M., Zahreva Y., Vysotska V., Matseliukh Y., Chyrun L., Korolenko O. (2022). Information System Development For Recording Offenses In Smart City Based On Cloud Technologies And Social Networks. Webology (ISSN: 1735-188X), 19(2).
  22. Bublyk M., Kalynii T., Varava L., Vysotska V., Chyrun L., Matseliukh Y. (2022). Decision Support System Design For Low-Voice Emergency Medical Calls At Smart City Based On Chatbot Management In Social Networks. Webology (ISSN: 1735-188X), 19(2).
  23. Trunina I., Zagirniak D., Pryakhina K., Bezugla T. (2020). Diagnostics of the enterprise personnel sustainability. Problems and Perspectives in Management, 18(2), 382. DOI: 10.21511/ppm.18(2).2020.31.
  24. Zhu G., Gao X. (2019). Precision retail marketing strategy based on digital marketing model. Science Journal of Business and Management, 7(1), 33–37. DOI: 10.11648/j.sjbm.20190701.15.
  25. Matseliukh Y., Vysotska V., Bublyk M., Kopach T., Korolenko O. (2021). Network modelling of resource consumption intensities in human capital management in digital business enterprises by the critical path method. URL: http://ds.knu.edu.ua/jspui/handle/123456789/3299.
  26. Bublyk M., Kowalska-Styczeń A., Lytvyn V., Vysotska V. (2021). The Ukrainian economy transformation into the circular based on fuzzy-logic cluster analysis. Energies, 14(18), 5951. DOI: 10.3390/en14185951.
  27. Vysotska V., Bublyk M., Vysotsky A., Berko A., Chyrun L., Doroshkevych K. (2020). Methods and tools for web resources processing in e-commercial content systems. In IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), Vol. 1, pp. 114–118. DOI: 10.1109/CSIT49958.2020.9321950.
  28. Bublyk M., Lytvyn V., Vysotska V., Chyrun L., Matseliukh Y., Sokulska N. (2020). The Decision Tree Usage for the Results Analysis of the Psychophysiological Testing. In IDDM, pp. 458–472. URL: https://ceur- ws.org/Vol-2753/paper31.pdf.
  29. Rishnyak I., Veres O., Lytvyn V., Bublyk M., Karpov I., Vysotska V., Panasyuk V. (2020). Implementation Models Application for IT Project Risk Management. In CITRisk, pp. 102–117.
  30. Bublyk M., Vysotska V., Chyrun L., Panasyuk V., Brodyak O. (2021). Assessing Security Risks Method in E-Commerce System for IT Portfolio Management. In IntelITSIS, pp. 362–379.
  31. Ren S., Chan HL., Siqin T. (2020). Demand forecasting in retail operations for fashionable products: methods, practices, and real case study. Ann Oper Res., 291, 761–777. DOI: 10.1007/s10479-019-03148-8.
  32. Vysotska V., Demchuk A., Lytvyn V. (2019). Features of the Internet architecture of the commercial content management system based on Machine Learning, Web mining and SEO technologies. Radio Electronics, Computer Science, Control, (4), 121–135.
  33. Balush I., Vysotska V., Albota, S. (2021). Recommendation System Development Based on Intelligent Search, NLP and Machine Learning Methods. In MoMLeT+ DS, pp. 584–617.
  34. Lytvyn V., et al. (2019). Design of the architecture of an intelligent system for distributing commercial content in the internet space based on SEO-technologies, neural networks, and Machine Learning. Eastern-European Journal of Enterprise Technologies, 2(2), pp. 15–34. DOI: 10.15587/1729-4061.2019.164441.
  35. Gozhyj A., Kalinina I., Vysotska V., Sachenko S., Kovalchuk R. (2020). Qualitative and Quantitative Characteristics Analysis for Information Security Risk Assessment in E-Commerce Systems. In ICTES, pp. 177–190. URL:    http://ceur-ws.org/Vol-2762/paper12.pdf.
  36. Lytvyn V., et al. (2019). Design of a recommendation system based on Collaborative Filtering and machine learning considering personal needs of the user. Eastern-European Journal of Enterprise Technologies, 4(2), pp. 6–28. DOI: 10.15587/1729-4061.2019.175507.
  37. Demchuk A., Lytvyn V., Vysotska V., Dilai M. (2020). Methods and Means of Web Content Personalization for Commercial Information Products Distribution. Advances in Intelligent Systems and Computing, Vol. 1020. Springer, Cham. DOI: 10.1007/978-3-030-26474-1_24.
  38. Bublyk M., Vysotska V., Chyrun L., Panasyuk V., Brodyak O. (2021). Assessing Security Risks Method in E-Commerce System for IT Portfolio Management. In IntelITSIS, pp. 362–379.
  39. Demchuk A., Rusyn B., Pohreliuk L., Gozhyj A., Kalinina I., Chyrun L., Antonyuk N. (2019). Commercial Content Distribution System Based on Neural Network and Machine Learning. In ICTES, pp. 40–57.
  40. Brownlee J. How to Configure the Number of Layers and Nodes in a Neural Network. URL: https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/.
  41. Barmuta K. A., Ponkratov V. V., Maramygin M., Kuznetsov N. V., Ivlev V., Ivleva M. (2019). Mathematical model of optimizing the balance sheet structure of the Russian banking system with allowance for the foreign exchange risk levels. Entrepreneurship and Sustainability Issues, 7(1), 484. DOI: 10.9770/jesi.2019.7.1(34).
  42. Lo S. L. Y., How B. S., Leong W. D., Teng S. Y., Rhamdhani M. A., Sunarso J. (2021). Techno-economic analysis for biomass supply chain: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 135, 110164. DOI: 10.1016/j.rser.2020.110164.
  43. Statistica software. URL: https://www.statistica.com/en/.
  44. Forecast pro. URL: https://www.forecastpro.com/.
  45. Novo forecast. URL: https://novoforecast.com/.
  46. Hilorme T., Tkach K., Dorenskyi O., Katerna O., Durmanov A. (2019). Decision making model of introducing energy-saving technologies based on the analytic hierarchy process. Journal of Management Information and Decision Sciences, 22(4), 489–494.
  47. Maram V., Sultan S. J., Omar M. F. B., Bommisetty V. N. R. (2019). Selection of software in manufacturing operations using analytic hierarchy process. In AIP Conference Proceedings, Vol. 2138, No. 1, p. 040016. AIP Publishing LLC. DOI: 10.1063/1.5121095.
  48. Şahin T., Ocak S., Top M. (2019). Analytic hierarchy process for hospital site selection. Health Policy and Technology, 8(1), pp. 42–50. DOI: 10.1016/j.hlpt.2019.02.005.