Kinetic coefficients of ion transport in a porous medium based on the Enskog–Landau kinetic equation

Normal solutions of the Enskog–Vlasov–Landau kinetic equation were obtained within the model of positively and negatively charged solid spheres for the system ion solution – porous medium.  The Chapman–Enskog method was applied.  Analytical expressions for coefficients of viscosity, thermal conductivity, diffusion of ions in the system ionic solution – porous medium were derived by constructing the equations of hydrodynamics on the basis of normal solutions of the kinetic equation.

  1. Kondori A., Esmaeilirad M., Harzandi A. M., Amine R., Saray M. T., Yu L., Liu T., Wen J. et al.  A room temperature rechargeable Li$_{2}$O-based lithium-air battery enabled by a solid electrolyte.  Science.  379 (6631), 499–505 (2023).
  2. Han G., Vasylenko A., Daniels L. M., Collins C. M., Corti L., Chen R., Niu H., Manning T. D. et al.  Superionic lithium transport via multiple coordination environments defined by two anion packing.  Science.  383 (6684), 739–745 (2024).
  3. Yu W., Shen Z., Yoshii T., Iwamura S., Ono M., Matsuda S., Aoki M., Kondo T., Mukai S. R. et al.  Hierarchically Porous and Minimally Stacked Graphene Cathodes for High-Performance Lithium–Oxygen Batteries.  Advanced Energy Materials.  14 (2), 2303055 (2024).
  4. Ding J., Du T., Thomsen E. H., Andresen D., Fischer M. R., M{\o}ller A. K., Petersen A. R. et al.  Metal-Organic Framework Glass as a Functional Filler Enables Enhanced Performance of Solid-State Polymer Electrolytes for Lithium Metal Batteries.  Advanced Science.  11 (10),  2306698 (2024).
  5. Biesheuvel P. M., Zhang L., Gasquet P., Blankert B., Elimelech M., van der Meer W. G. J.  Ion Selectivity in Brackish Water Desalination by Reverse Osmosis: Theory, Measurements, and Implications.  Environmental Science & Technology Letters.  7 (1), 42–47 (2019).
  6. Joekar-Niasar V., Schreyer L., Sedighi M., Icardi M., Huyghe J.  Coupled Processes in Charged Porous Media: From Theory to Applications.  Transport in Porous Media.  130, 183–214 (2019).
  7. Yang Z., Zhou Y., Feng Z., Rui X., Zhang T., Zhang Z.  A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification.  Polymers.  11 (8),  1252  (2019).
  8. Heiranian M., Fan H., Wang L., Lu X., Elimelech M.  Mechanisms and models for water transport in  reverse osmosis membranes: history, critical, assessment, and recent developments.  Chemical Society Reviews.  52 (24),  8455–8480 (2023).
  9. Fan H., Huang Y., Yip N. Y.  Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities.  Frontiers of Environmental Science & Engineering.  17 (2),  25 (2023).
  10. Miao J., Hu Q., Zhang Z., Hu Y.  Bioinspired cell membrane-based nanofiltration membranes with hierarchical pore channels for fast molecular separation.  Journal of Membrane Science.  697, 122578 (2024).
  11. Ye Z., Galvanetto N., Puppulin L., Pifferi S., Flechsig H., Arndt M., Trivino C. A. S., Di Palma M., Guo S., Vogel H., Menini A., Franz C. M., Torre V., Marchesi A.  Structural heterogeneity of the ion and lipid channel TMEM16F.  Nature Communications.  15, 110 (2024).
  12. Stabilini S., Menini A., Pifferi S.  Anion and Cation Permeability of the Mouse TMEM16F Calcium-Activated Channel.  International Journal of Molecular Sciences.  22 (16), 8578 (2021).
  13. Hou J., Zhang H.  Advanced Methods for Ion Selectivity Measurement in Nanofluidic Devices.  Advanced Materials Technologies.  8 (9), 2201433 (2023).
  14. Keene S. T., Rao A., Malliaras G. G.  The relationship between ionic-electronic coupling and transport in organic mixed conductors.  Science Advances.  9 (35), eadi3536 (2023).
  15. Zech A., de Winter M.  A Probabilistic Formulation of the Diffusion Coefficient in Porous Media as Function of Porosity.  Transport in Porous Media.  146, 475–492 (2023).
  16. Brey J.,  García de Soria M. I., Maynar P.  Kinetic theory of diffusion in a channel of varying cross section.  Molecular Physics.  e2378116 (2024).
  17. Sahimi M.  Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown.  Physics Reports.  306 (4–6), 213–395 (1998).
  18. Hatano Y., Hatano N.  Dispersive transport of ions in column experiments: An explanation of long-tailed profiles.  Water Resources Research.  34 (5), 1027–1033 (1998).
  19. Gelb L. D., Gubbins K. E., Radhakrishnan R., Sliwinska-Bartkowiak M.  Phase separation in confined systems.  Reports on Progress in Physics.  62 (12), 1573–1659 (1999).
  20. Advances in Lithium-Ion Batteries.  Eds.: W. A. van Schalkwijk, B. Scrosati.  Springer New York, NY (2002).
  21. Wagemaker M.  Structure and Dynamics of Lithium in Anatase TiO$_2$.  Delft University Press, Netherland (2002).
  22. Berkowitz B., Klafter J., Metzler R., Scher H.  Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations.  Water Resources Research.  38 (10), 1191 (2002).
  23. Berkowitz B., Cortis A., Dentz M., Scher H.  Modeling non-Fickian transport in geological formations as a continuous time random walk.  Reviews of Geophysics.  44 (2), RG2003 (2006).
  24. Smith J. J., Zharov I.  Ion Transport in Sulfonated Nanoporous Colloidal Films.  Langmuir.  24 (6), 2650–2654 (2008).
  25. Neuman S. P., Tartakovsky D. M.  Perspective on theories of non-Fickian transport in heterogeneous media.  Advances in Water Resources.  32 (5), 670–680 (2009).
  26. Rotenberg B., Pagonabarrag I., Frenkel D.  Coarse-grained simulations of charge, current and flow in heterogeneous media.  Faraday Discussions.  144, 223–243  (2010).
  27. Yang C., Nakayama A.  A synthesis of tortuosity and dispersion in effective thermal conductivity of porous media.  International Journal of Heat and Mass Transfer.  53 (15–16), 3222–3230 (2010).
  28. Maffeo C., Bhattacharya S., Yoo J., Wells D., Aksimentiev A.  Modeling and Simulation of Ion Channels.  Chemical Reviews.  112 (12), 6250–6284 (2012).
  29. Bijeljic B., Raeini A., Mostaghimi P., Blunt M. J.  Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images.  Physical Review E.  87 (1), 013011 (2013).
  30. Grygorchak I. I., Kostrobij P. P., Stasiuk I. V., Tokarchuk M. V., Velychko O. V., Ivashchyshyn F. O., Markovych B. M.  Physical processes and their microscopic models in periodic inorganic/organic clathrates.  Lviv, Rastr-7 (2015), (in Ukrainian).
  31. Lithium batteries. Eds.: G.-A. Nazri, G. Pistoia. USA, Springer (2009).
  32. Tyukhova A., Dentz M., Kinzelbach W., Willmann M.  Mechanisms of Anomalous Dispersion in Flow Through Heterogeneous Porous Media.  Physical Review Fluids.  1 (7), 074002 (2016).
  33. Comolli A., Dentz M.  Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach.  The European Physical Journal B.  90, 166 (2017).
  34. Waisbord N., Stoop N., Walkama D. M., Dunkel J., Guasto J. S.  Anomalous percolation flow transition of yield stress fluids in porous media.  Physical Review Fluids.  4 (6), 063303 (2019).
  35. Zhao T., Qing L., Long T., Xu X., Zhao S., Lu X.  Dynamical coupling of ion adsorption with fluid flow in nanopores.  AIChE Journal.  67 (7), e17266 (2021).
  36. Schmuck M., Bazant M. Z.  Homogenization of the Poisson–Nernst–Planck equation for ion  transport in charged porous media.  SIAM Journal on Applied Mathematics.  75 (3), 1369–1401 (2015).
  37. Revil A.  Transport of water and ions in partially water-saturated porous media. Part 1. Constitutive equations.  Advances in Water Resources.  103, 119–138 (2017).
  38. Revil A.  Transport of water and ions in partially water-saturated porous media. Part 2. Filtration effects.  Advances in Water Resources.  103, 139–152 (2017).
  39. Bisquert J., Compte A.  Theory of the electrochemical impedance of anomalous diffusion.  Journal of Electroanalytical Chemistry.  499 (1), 112–120 (2001).
  40. Fuliński A., Kosińska I. D., Siwy Z.  On the validity of continuous modelling of ion transport through nanochannels.  Europhysics Letters.  67 (4), 683–689 (2004).
  41. Fuliński A., Kosińska I. D., Siwy Z.  Transport properties of nanopores in electrolyte solutions: the diffusional model and surface currents.  New Journal of Physics.  7 (1),  132 (2005).
  42. Sibatov R. T., Uchaikin V. V.  Fractional differential approach to dispersive transport in semiconductors.  Physics-Uspekhi.  52 (10), 1019–1043 (2009).
  43. Sibatov R. T.  Drobno-differencialnaja teorija anomalnoj kinetiki nositelej zarjada v neuporjadochennyh poluprovodnikovyh sistemah.  Thesis for the Degree of Doctor of Sciences in Physics and Mathematics. Uljanovsk (2012).
  44. Khamzin A. A., Popov I. I., Nigmatullin R. R.  Correction of the power law of ac conductivity in ion-conducting materials due to the electrode polarization effect.  Physical Review E. 89 (3), 032303 (2014).
  45. Ferguson T. R., Bazant M. Z.  Nonequilidrium Thermodynamics of Porous Electrodes.  Journal of The Electrochemical Society.  159 (12), A1967–A1985 (2012).
  46. Xie Y., Li J., Yuan C.  Mathematical modeling of the electrochemical impedance spectroscopy in lithium ion battery cycling.  Electrochimica Acta.  127, 266–275 (2014).
  47. Kostrobij P. P., Markovych B. M., Chernomorets Yu. I., Tokarchuk R. M., Tokarchuk M. V.  Statistical description of electro-diffusion processes of ions intercalation in "electrolyte–electrode" system.  Mathematical Modeling and Computing.  1 (2), 178–194 (2014).
  48. Kostrobij P., Markovych B., Viznovych O., Tokarchuk M.  Generalized electrodiffusion equation with fractality of space-time.  Mathematical Modeling and Computing.  3 (2), 163–172  (2017).
  49. Grygorchak I. I., Ivashchyshyn F. O., Tokarchuk M. V., Pokladok N. T., Viznovych O. V.  Modification of properties of GaSe$\langle\beta$-cyclodexterin$\langle$FeSO$_4\rangle\rangle$ Clathrat by synthesis in superposed electric and light-wave fields. Journal of Applied Physics.  121 (18), 185501 (2017).
  50. Kostrobij P. P., Ivashchyshyn F. O., Markovych B. M., Tokarchuk M. V.   Microscopic theory of the influence of dipole superparamagnetics (type $\langle\beta\mathrm{-CD}\langle\mathrm{FeSO}_4\rangle\rangle$) on current flow in semiconductor layered structures (type GaSe, InSe).  Mathematical Modeling and Computing.  8 (1), 89–105 (2021).
  51. Kostrobij P., Grygorchak I., Ivashchyshyn I., Markovych B., Viznovych O., Tokarchuk M.  Generalized electrodiffusion equation with fractality of space time: experiment and theory.  The Journal of Physical Chemistry A.  122 (16), 4099–4110 (2018).
  52. Omelyan I. P., Zhelem R. I., Sovyak E. M., Tokarchuk M. V.  Calculation of distribution functions and diffusion coefficients for ions in the system "initial electrolyte solution – membrane".  Condensed Matter Physics.  2 (1), 53–62 (1999).
  53. Yukhnovskii I. R., Zhelem R. I., Tokarchuk M. V.  Physical processes in the fuel containing masses interacting with aqueous solutions in the "Shelter" object.  Inhomogeneous diffusion of ions UO$_2^{2+}$, Cs$^+$ in the system "glassy nuclear magma – water".  Condensed Matter Physics.  2 (2), 351–360 (1999).
  54. Yukhnovskii I. R., Omelyan I. P., Zhelem R. I., Tokarchuk M. V.  Statistical theory for diffusion of radionuclides in ground and subterranean water.  Radiation Physics and Chemistry.  59 (4), 361–375 (2000).
  55. Jardat M., Hribar-Lee B., Vlachy V.  Self-diffusion of ions in charged nanoporous media.  Soft Matter.  8, 954–964 (2012).
  56. Jardat M., Hribar-Lee B., Dahirel V., Vlachy V.  Self-diffusion and activity coefficients of ions in charged disordered media.  The Journal of Chemical Physics.  137 (11), 114507 (2012).
  57. Holovko M. F., Korvatska M. Ya.  Diffusion of hard sphere fluids in disordered porous media: Enskog theory description.  Condensed Matter Physics.  23 (2), 23605 (2020).
  58. Tokarchuk M. V.  Kinetic description of ion transport in the system "ionic solution – porous environment".  Mathematical Modeling and Computing.  9 (3), 719–733 (2022).
  59. Zubarev D. N., Morozov V. G., Omelyan I. P., Tokarchuk M. V.  Kinetic equations for dense gases and liquids.  Theoretical and Mathematical Physics.  87 (1), 412–424 (1991).
  60. Zubarev D. N., Morozov V. G., Omelyan I. P., Tokarchuk M. V.  The Enskog–Landau kinetic equation for charged hard spheres.  Problems of atomic science and technique.  Series: Nuclear physics investigations (theory and experiment).  Kharkov, Kharkov Physico Technical Institute.  3 (24), 60–65 (1992).
  61. Kobryn A. E., Morozov V. G., Omelyan I. P., Tokarchuk M. V.  Enskog–Landau kinetic equation. Calculation of the transport coefficient for charged hard spheres.  Physica A: Statistical Mechanics and its Applications.  230 (1–2), 189–201 (1996).
  62. Tokarchuk M. V., Omelyan I. P.  Model kinetic equations for dense gases and liquids.  Ukrainian Journal of Physics.  35 (8), 1255–1261 (1990), (in Ukrainian).
  63. Chapman S., Cowling T. G.  The Mathematical Theory of Nonuniform Gases.  Cambridge, Cambridge University Press (1952).
  64. Ferziger J. H., Kaper H. G.  Mathematical theory of transport processes in gases. North-Holland, Amsterdam (1972).
  65. Kobryn O. E., Omelyan I. P., Tokarchuk M. V.  Normal solutions and transport coefficient to the Enskog–Landau kinetic equation for a two-component system of charged hard spheres. The Chapman–Enskog method.  Physica A.  268 (3–4), 607–628 (1999).
  66. Kobryn O. E., Omelyan I. P., Tokarchuk M. V.  Enskog–Landau kinetic equation for multicomponent mixture. Analytical calculation of transport coefficient.  The European Physical Journal B – Condensed Matter and Complex Systems.  13, 579–583 (2000).
  67. Blum L., Hoye J. S.  Mean spherical model for asymetric electrolytes. II. Thermodynamic properties and pair correlation function.  Journal of Physical Chemistry.  81 (13), 1311–1316 (1977).
  68. Lebowitz J. L.  Exact solution of generalized Percus–Yevick equation for a mixture of hard spheres.  Physical Review.  133 (4A),  895–889 (1964).
  69. Copestake A. P., Evans R.  Charge ordering and the structure of ionic liquids: screened Coulomb versus Coulomb interionic potentials.  Journal of Physics C: Solid State Physics.  15, 4961–4974 (1982).
  70. Kahl G., Pastore G.  Percus–Yevick pair-distribution functions of a binary hard-sphere system covering the whole r-range.  Journal of Physics A: Mathematical and General.  24 (13), 2995–3011 (1991).
  71. Babu C. S., Ichiye T.  New integral equation theory for primitive model ionic liquids: from electrolytes to molten salts.  Journal of Chemical Physics.  100 (12), 9147–9155 (1994).
  72. Ramshaw J. D.  Time-dependent direct correlashion function.  Physical Review A.  24 (3), 1567–1570 (1981).
  73. Eu B. C.  Dynamic Ornstein–Zernike Equation.  In: Transport Coefficients of Fluids. Chemical physics.  82, 221–240 (2006).
  74. Gan H. H., Eu B. C.  Theory of the nonequilibrium structure of dense simple fluids: Effects of shearing.  Physical Review A.  45 (6), 3670–3686 (1992).
  75. Tokarchuk M. V.  To the kinetic theory of dense gases and liquids. Calculation of quasi-equilibrium particle distribution functions by the method of collective variables.  Mathematical Modeling and Computing.  9 (2), 440–458 (2022).