GALILEO HAS overview, comparison with analogues, and assessment of perspective

In 2022, Galileo, the European GNSS, launched the first phase of its HAS (High Accuracy Service) initiative. With free and global corrections for clock delays and satellite orbits, Galileo HAS provides decimeter positioning accuracy without additional ground networks. This research aims to evaluate the advancements in precise positioning technologies, focusing on the Galileo High Accuracy Service (HAS). The study highlights the importance of precision positioning methods, including Standard Point Positioning (SPP), Real-Time Kinematic (RTK), and Precise Point Positioning (PPP). It assesses the performance of Galileo HAS in comparison with other global augmentation services like QZSS CLAS and BeiDou PPP-B2b. The methodology involves a comprehensive analysis of the technical capabilities, accuracy, and operational limitations of HAS through a literature review and comparative analysis of positioning performance data. The results confirm that Galileo HAS achieves decimeter-level accuracy globally, with horizontal accuracy below 20 cm and vertical accuracy below 40 cm.  However, it suffers from prolonged convergence times due to the absence of atmospheric and phase bias corrections in its initial phase. The scientific novelty lies in identifying HAS's potential as the first global free PPP correction service via Signal-in-Space (SIS), distinguishing its practical advantages in semi-enclosed environments compared to traditional PPP augmentation systems. The study also emphasizes the unique integration challenges posed by HAS corrections due to proprietary encoding formats. Thee findings underscore HAS's utility in geodesy, mapping, and real-time applications, particularly in resource-constrained settings. However, the research highlights critical areas for improvement, such as implementing atmospheric corrections and phase bias adjustments, to meet real-time precise positioning demands. The conclusions note the undoubted usefulness of such a service as Galileo HAS and review its shortcomings and methods of solving them.

  1. Borio, D., Susi, M., & Gioia, C. (2023). GHASP: A Galileo HAS parser. GPS Solutions, 27(4), 197. https://doi.org/10.1007/s10291-023-01529-y
  2. Cucchi, L., Damy, S., Gioia, C., Motella, B., & Paonni, M. (2024). Galileo High Accuracy Service: Tests in Different Operational Conditions. NAVIGATION: Journal of the Institute of Navigation, 71(4). https://doi.org/10.33012/navi.665
  3. Elsobeiey, M., & Al-Harbi, S. (2016). Performance of real-time Precise Point Positioning using IGS real-time service. GPS solutions, 20, 565-571. https://doi.org/10.1007/s10291-015-0467-z
  4. Fernandez-Hernandez, I., Chamorro-Moreno, A., Cancela-Diaz, S., Calle-Calle, J. D., Zoccarato, P., Blonski, D., ... & Mozo, A. (2022). Galileo high accuracy service: initial definition and performance. GPS solutions, 26(3), 65. https://doi.org/10.1007/s10291-022-01247-x
  5. Galileo HAS Info Note. (2020). gsc-europa.eu/sites/default/files/sites/all/files/Galileo_HAS_Info_Note.pdf
  6. Galileo High Accuracy Service Signal-In-Space Interface Control Document (HAS SIS ICD). Retrieved from: gsc-europa.eu/sites/default/files/sites/all/files/Galileo_HAS_SIS_ICD_v1.0.pdf.
  7. Gao, M., Meng, Z., Zhu, H., Xu, A., Cao, Z., & Tan, C. (2023). Research on the Real-Time Ambiguity Resolution Algorithm of GPS/Galileo/BDS Based on CNES Real-Time Products. Remote Sensing, 15(21), 5159. https://doi.org/10.3390/rs15215159
  8. Hadas, T., Kazmierski, K., Kudłacik, I., Marut, G., & Madraszek, S. (2024). Galileo High Accuracy Service in real-time PNT, geoscience and monitoring applications. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2024.3354293
  9. Hauschild, A., Montenbruck, O., Steigenberger, P., Martini, I., & Fernandez-Hernandez, I. (2022). Orbit determination of Sentinel-6A using the Galileo high accuracy service test signal. GPS solutions, 26(4), 120. https://doi.org/10.1007/s10291-022-01312-5
  10. Horst, O., Kirkko-Jaakkola, M., Malkamäki, T., Kaasalainen, S., Fernández-Hernández, I., Moreno, A. C., & Díaz, S. C. (2022, September). HASlib: an open-source decoder for the Galileo high accuracy service. In Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022) (pp. 2625-2633). https://doi.org/10.33012/2022.18508
  11. Liu, T., Jiang, W., Laurichesse, D., Chen, H., Liu, X., & Wang, J. (2020). Assessing GPS/Galileo real-time precise point positioning with ambiguity resolution based on phase biases from CNES. Advances in Space Research, 66(4), 810-825. https://doi.org/10.1016/j.asr.2020.04.054
  12. Manandhar, D., Honda, K., & Murai, S. (1999, June). Accuracy assessment and improvement for level survey using real time kinematic (RTK) GPS. In IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No. 99CH36293) (Vol. 2, pp. 882-884). IEEE. https://doi.org/10.1109/IGARSS.1999.774473
  13. Martínez-Carricondo, P., Agüera-Vega, F., & Carvajal-Ramírez, F. (2023). Accuracy assessment of RTK/PPK UAV-photogrammetry projects using differential corrections from multiple GNSS fixed base stations. Geocarto International, 38(1), 2197507. https://doi.org/10.1080/10106049.2023.2197507
  14. Naciri, N., Yi, D., Bisnath, S., de Blas, F. J., & Capua, R. (2023). Assessment of Galileo High Accuracy Service (HAS) test signals and preliminary positioning performance. GPS solutions, 27(2), 73. https://doi.org/10.1007/s10291-023-01410-y
  15. Pintor, P., Lopez-Martinez, M., Gonzalez, E., Safar, J., & Boyle, R. (2023). Testing Galileo High-Accuracy Service (HAS) in Marine Operations. Journal of Marine Science and Engineering, 11(12), 2375. https://doi.org/10.3390/jmse11122375
  16. Rizos, C. (2009). Network RTK research and implementation-a geodetic perspective. Positioning, 1(02). https://doi.org/10.5081/jgps.1.2.144
  17. Savchuk, S., Grzegorzewski, M., Gołda, P., & Kerker, V. POSITIONING USING THE PRECISION GALILEO HAS SERVICE. https://doi.org/10.36163/aon-2024-0007
  18. Schmitz, M. (2012, March). RTCM state space representation of messages, status and plans. In PPP-RTK & Open Standards Symposium (Vol. 12).
  19. Takahashi, S., Zhang, H., & Kubo, N. Performance Evaluation of CLAS and PPP Using Correction Data via QZSS. "The 16th IAIN World Congress 2018 in Makuhari Messe, Chiba, Japan", 2018.
  20. Takasu, T. (2013). Rtklib. Retrieved from: http:\\www. rtklib. com.
  21. Teunissen, P. J., & Montenbruck, O. (Eds.). (2017). Springer handbook of global navigation satellite systems (Vol. 10, pp. 978-3). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1
  22. Timote, C. C., Juan, J. M., Sanz, J., Rovira-Garcia, A., González-Casado, G., Orús-Pérez, R., ... & Blonski, D. (2024). Ionospheric corrections tailored to Galileo HAS: validation with single-epoch navigation. GPS Solutions, 28(2), 93. https://doi.org/10.1007/s10291-024-01630-w
  23. Yang, Y., Ding, Q., Gao, W., Li, J., Xu, Y., & Sun, B. (2022). Principle and performance of BDSBAS and PPP-B2b of BDS-3. Satellite navigation, 3(1), 5. https://doi.org/10.1186/s43020-022-00066-2
  24. Yi, D., Naciri, N., & Bisnath, S. (2024). Precise positioning using smartphone GNSS/IMU integration with the combination of Galileo high accuracy service (HAS) corrections and broadcast ephemerides. GPS Solutions, 28(3), 140. https://doi.org/10.1007/s10291-024-01689-5
  25. Zhang, R., Tu, R., & Lu, X. (2024). HASPPP: An open-source Galileo HAS embeddable RTKLIB decoding package. GPS Solutions, 28(4), 169. https://doi.org/10.1007/s10291-024-01706-7