THE MASS TRANSFER DURING THE DISSOLUTION OF BORIC ACID IN WATER INTENSIFIED BY MECHANICAL STIRRING

The kinetics granules of boric acid (GBA) dissolution were investigated based on the solution temperature and stirring frequency. Experimental mass transfer coefficients were determined and compared with theoretical values. The results indicate that increasing the stirring frequency and the solvent temperature increases the mass transfer coefficient. A computational relationship was derived, enabling the prediction of GBA dissolution based on solution temperature and stirring frequency. These findings highlight the significant impact of reactor parameters and mixing conditions on the mass transfer process in solid-liquid systems. The study's results facilitate the simulation and optimization of mass transfer processes in solid-liquid systems, contributing to the optimization of chemical industry technological processes and reducing the energy consumption of the dissolution process.

  1. Wahl, M. (2005). Boric acid. In Encyclopedia of Toxicology (2nd ed., pp. 329-330). https://doi.org/10.1016/B0-12-369400-0/00142-3
  2. Nahurskyi, O. A. (2012). Zakonomirnosti kapsuluvannia rechovyn u stani pseudoridzhennia ta yikh dyfuziinoho vivilnennia: monohrafiia. Lviv: Vydavnytstvo Lvivskoi politekhniky.
  3. Liang H, Jahanmir S.(1995) Boric acid as an additive for core-drilling of alumina. J Tribol,117:65–73.
  4. Wei JJ, Erdemir A, Fenske GR.(2000) Dry lubricant films for aluminum forming. Tribol Trans, 43(3):535–41.
  5.  Erdemir A. (1991)Tribological properties of boric acid and boric-acid- forming surfaces. Part I: crystal chemistry and mechanism of self- lubrication of boric acid. Lubr Eng, 47:168–73.
  6.  Rao KP, Wei JJ. (2001) Performance of a new dry lubricant in the forming of aluminum alloy sheets. Wear, 249,86–93.
  7. Lyuta, O. V., & Symak, D. M. (2018). Extraction of soluble solid phase from a layer of porous inert medium. Bulletin of Lviv Polytechnic National University. Chemistry, Technology of Substances and Their Applications, (886), 165-170.
  8. Atamaniuk, V. M., Symak, D. M., & Danyliuk, O. M. (2016). Dissolution of the polydisperse solid phase in a gas-liquid flow. Bulletin of Lviv Polytechnic National University. Chemistry, Technology of Substances and Their Applications, (841), 271-277.
  9. Symak, D., Atamaniuk, V., & Gumnitsky, Ya. (2015). Analysis of dissolution kinetics based on the local isotropic turbulence theory. Chemistry & Chemical Technology, 9(4), 493-497. https://doi.org/10.23939/chcht09.04.493
  10. Sabadash, V., Mylanyk, O., Matsutska, O., & Gumnytsky, J. (2017). Kinetic regularities of copper ions adsorption by natural zeolite. Chemistry & Chemical Technology, 11(4), 459-462. https://doi.org/10.23939/chcht11.04.459
  11. Symak, D. M., & Liuta, O. V. (2015). Nestatsionarnyi protses rozchynennia sharu zernystoho materialu. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, (812), 308-312.
  12. Symak, D., Gumnytsky, Y., Atamaniuk, V., & Danyliuk, O. (2015). Kinetika rozchynnya polidyspersnoho kaliyu sulfatu za pereminnoyi rushiynoyi syly. Scientific Works, 80(1). https://doi.org/10.15673/swonaft.v80i1.193
  13. Aksielrud, G., & Lysiański, V. (1978). *Solid-liquid extraction*. Warsaw: Wydaw, Nauk. Techn.
  14. Semenishin, Y. M., Trotskyi, V. I., & Fedorchuk-Moroz, V. I. (2004). Osoblyvosti ekstrahuvannia tsilovykh komponentiv z porystykh struktur. Naukovyi visnyk NLTU Ukrainy, 14(4), 317-321.
  15. Humnytskyi, Y. M., & Symak, D. M. (2017). Intensification of mass transfer processes in the solid-liquid system by the introduction of the gas phase. Proceedings of the XVIII International Scientific and Practical Conference.
  16.  Pangarkar, V. G.; Yawalkar, A. A.; Sharma, M. M.; Beenackers, A. A. C. M. (2002) Particle–Liquid Mass Transfer Coefficient in Two-/Three-Phase Stirred Tank Reactors. Ind. Eng. Chem. Res.,  41,  4141– 4167,  DOI: 10.1021/ie010933j
  17. Meneses, J. P. C. H.; Calcada, L. A.; Scheid, C. M.; Magalhães, S. d. C. (2017) Determination of the Convective Mass Transfer Coefficient in the Dissolution of NaCl Particles in Non-Newtonian Fluids. J. Nat. Gas Sci. Eng,  45,  118– 126,  DOI: 10.1016/j.jngse.2017.03.014
  18. Carletti, C.; Bikić, S.; Montante, G.; Paglianti, A. (2018) Mass Transfer in Dilute Solid–liquid Stirred Tanks. Ind. Eng. Chem. Res.,  57, 6505– 6515,  DOI: 10.1021/acs.iecr.7b04730
  19. Harriott, P.  (1962) Mass Transfer to Particles: Part I. Suspended in Agitated Tanks. AIChE J.,  8,  93– 101,  DOI: 10.1002/aic.690080122
  20.  Guiza, S.; Hajji, H.; Bagane, M.(2019) External Mass Transport Process during the Adsorption of Fluoride from Aqueous Solution by Activated Clay. C. R. Chim.,  22,  161– 168,  DOI: 10.1016/j.crci.2019.02.001
  21.  Girish, C. R.; Murty, V. R.(2016) Mass Transfer Studies on Adsorption of Phenol from Wastewater Using Lantana Camara. Int. J. Chem. Eng.,  1– 11,  DOI: 10.1155/2016/5809505
  22. Oriakhi, C. O. (2021). Chemistry in Quantitative Language: Fundamentals of General Chemistry Calculations. Oxford: Oxford University Press.
  23. Salmi, T. O., Mikkola, J., & Warna, J. P. (2019). Chemical Reaction Engineering and Reactor Technology (2nd ed.). Boca Raton: CRC Press.
  24. Sabadash, V., Mylanyk, O., Matsuska, O., & Gumnitsky, J. (2017). Kinetic regularities of copper ions adsorption by natural zeolite. Chemistry & Chemical Technology, 11, 459-462. https://doi.org/10.23939/chcht11.04.459
  25. Miyabe, K., & Isogai, R. (2011). Estimation of molecular diffusivity in liquid phase systems by the Wilke–Chang equation. Journal of Chromatography, 1218(38), 6639-6645. https://doi.org/10.1016/j.chroma.2011.07.018