АНАЛІЗ ПРОДУКТИВНОСТІ ГЕНЕТИЧНОГО АЛГОРИТМУ, ДОПОВНЕНОГО ЗГОРТКОВОЮ НЕЙРОННОЮ МЕРЕЖЕЮ, ДЛЯ ТОПОЛОГІЧНОЇ ОПТИМІЗАЦІЇ МЕТАМАТЕРІАЛІВ

Надіслано: Листопад 20, 2024
Переглянуто: Листопад 25, 2024
Прийнято: Листопад 30, 2024
1
Національний університет Львівська політехніка
2
Національний університет «Львівська політехніка»
3
Білостоцький технологічний університет, Польща

Поєднання згорткових нейронних мереж (CNN) та генетичних алгоритмів (GA), створює перспективний підхід для топологічної оптимізації складних гратчастих структур. Гратчасті структури використовуються, як основа для комплексних метаматеріалів. Розглядається здатність методу генерувати оптимальні гратчасті структури при мінімальному використанні матеріалу. Згорткова нейронна мережа використовується, як інструмент аналізу, що може оцінювати та прогнозувати ключові параметри згенерованих гратчастих структур. Основна мета алгоритму – генерація широкого спектру конфігурацій, що згодом будуть використані нейронною мережею в якості навчальних даних. Ключові показники продуктивності включають стійкість до навантаження, відношення міцності згенерованого матеріалу, до його ваги, час необхідний для генерації гратчастих структур, та точність генерації. Дані показники використовуються, як інструменти для оцінки продуктивності методу в заданих умовах навколишнього середовища. Метод CNN-GA, може створювати високоефективні, легкі структури з високою продуктивністю та збереженням матеріалу. Відповідні засоби випадкової генерації, що присутні в генетичному алгоритмі, можуть виявляти унікальні конфігурації гратчастих решіток та пропонувати варіанти, які могли б бути проігноровані стандартними методами оптимізації. Проте ефективність методу може бути обмежена наявними ресурсами і можливостями обчислювальної системи. Крім того точність системи прогнозування, обмежується його засобами випадкової генерації. Даний аналіз висвітлює сильні сторони методу, потенційні обмеження та практичні аспекти використання, та закладає основу для майбутніх досліджень, спрямованих на вдосконалення методів топологічної оптимізації метаматеріалів.

  1. A. Tobias Maconachie, Martin Leary, Bill Lozanovski, Xuezhe Zhang, Ma Qian, Omar Faruque, Milan Brandt, Tobias Maconachie, Martin Leary, Bill Lozanovski, Xuezhe Zhang, Ma Qian, Omar Faruque, Milan Brandt, SLM lattice structures: Properties, performance, applications and challenges, Materials & Design, Volume 183, 2019, 108137, ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2019.108137.
  2. Kai Wei, Qidong Yang, Bin Ling, Haiqiong Xie, Zhaoliang Qu, Daining Fang, Mechanical responses of titanium 3D kagome lattice structure manufactured by selective laser melting, Extreme Mechanics Letters, Volume 23, 2018, Pages 41-48, ISSN2352-4316, https://doi.org/10.1016/j.eml.2018.07.001.
  3. Xiaoya Zhai, Weiming Wang, Falai Chen, Jun Wu, Topology optimization of differentiable microstructures, Computer Methods in Applied Mechanics and Engineering, Volume 418, Part A, 2024, 116530, ISSN 0045-7825, https://doi.org/10.1016/j.cma.2023.116530.
  4. Z. Li, F. Liu, W. Yang, S. Peng and J. Zhou, "A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects," in IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 6999-7019, Dec. 2022, doi: 10.1109/TNNLS.2021.3084827.
  5. Zhao, X., Wang, L., Zhang, Y. et al. A review of convolutional neural networks in computer vision. Artif Intell Rev 57, 99 (2024). https://doi.org/10.1007/s10462-024-10721-6
  6. Hunter T. Kollmann, Diab W. Abueidda, Seid Koric, Erman Guleryuz, Nahil A. Sobh, Deep learning for topology optimization of 2D metamaterials, Materials & Design, Volume 196, 2020, 109098, ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2020.109098.
  7. Viswanath, A., Abueidda, D. W., Modrek, M., Khan, K. A., Koric, S., & Abu Al-Rub, R. K. (2023). Gyroid-like metamaterials: Topology optimization and Deep Learning. arXiv. https://arxiv.org/abs/2303.10007
  8. Martin P. Bendsøe and Ole Sigmund's book, "Topology Optimization: Theory, Methods, and Applications," is a comprehensive resource on the subject. The second edition, published by Springer in 2003, offers an in-depth exploration of topology optimization techniques and their applications. 
  9. A. Lambora, K. Gupta and K. Chopra, "Genetic Algorithm- A Literature Review," 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 2019, pp. 380-384, doi: 10.1109/COMITCon.2019.8862255.
  10. F. N. E. Edison, E. Marcela Mosquera, T. Berenice Arguero and A. Julio Zambrano, "Experimental Study of Convergence and Stability of a Genetic Algorithm Using Different Selection Methods," 2024 IEEE Eighth Ecuador Technical Chapters Meeting (ETCM), Cuenca, Ecuador, 2024, pp. 1-6, doi: 10.1109/ETCM63562.2024.10746169.
  11. M. Yousef, L. Al Shehab, D. A. Ghani, H. Alazzam and M. Ghatasheh, "Enhancing Autism Disease Classification Using a Hybrid GA-KNN Approach for Feature Selection," 2024 15th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 2024, pp. 1-7, doi: 10.1109/ICICS63486.2024.10638319
  12. Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-last: strength to weight 3D printed objects. ACM Trans. Graph. 33, 4, Article 97 (July 2014), 10 pages. https://doi.org/10.1145/2601097.2601168.
  13. Tobias Maconachie, Martin Leary, Bill Lozanovski, Xuezhe Zhang, Ma Qian, Omar Faruque, Milan Brandt, SLM lattice structures: Properties, performance, applications and challenges, Materials & Design, Volume 183, 2019, 108137, ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2019.108137.
  14. Dede, Luca & Borden, Michael & Hughes, Thomas. (2012). Isogeometric Analysis for Topology Optimization with a Phase Field Model. Archives of Computational Methods in Engineering. 19. 10.1007/s11831-012-9075-z.
  15. X.Z. Zhang, M. Leary, H.P. Tang, T. Song, M. Qian, Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges, Current Opinion in Solid State and Materials Science, Volume 22, Issue 3, 2018, Pages 75-99, ISSN 1359-0286, https://doi.org/10.1016/j.cossms.2018.05.002.
  16. N. Muliak, A. Zdobytskyi, M. Lobur and U. Marikutsa, "Application of Genetic Algorithms in Designing and Optimizing Matrix Structures of Metamaterials," 2024 IEEE 19th International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), Zozuli, Ukraine, 2024, pp. 29-32, doi: 10.1109/MEMSTECH63437.2024.10620056.
  17. Chunze Yan, Liang Hao, Ahmed Hussein, Philippe Young, Juntong Huang, Wei Zhu, Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering, Materials Science and Engineering: A, Volume 628, 2015, Pages 238-246, ISSN 0921-5093,https://doi.org/10.1016/j.msea.2015.01.06.
  18. Ali Zargarian, Mohsen Esfahanian, Javad Kadkhodapour, Saeid Ziaei-Rad, Delaram Zamani, On the fatigue behavior of additive manufactured lattice structures, Theoretical and Applied Fracture Mechanics, Volume 100, 2019, Pages 225-232, ISSN 0167-8442, https://doi.org/10.1016/j.tafmec.2019.01.012.
  19. Diab W. Abueidda, Mohammad Almasri, Rami Ammourah, Umberto Ravaioli, Iwona M. Jasiuk, Nahil A. Sobh, Prediction, and optimization of mechanical properties of composites using convolutional neural networks, Composite Structures, Volume 227,2019,111264,ISSN 0263-8223.
  20. Claus Claeys, Noé Geraldo Rocha de Melo Filho, Lucas Van Belle, Elke Deckers, Wim Desmet, Design and validation of metamaterials for multiple structural stop bands in waveguides, Extreme Mechanics Letters, Volume 12,2017,Pages 7-22,ISSN 2352-4316.