The article presents an alternative approach to the description of the cutting scheme, different from the accepted one, which corresponds to the real kinematics of the Power Skiving process. The interpretation of the process is based on the fact that the main cutting movement is the rotational movement of the tool, which, due to the intersection of the axes of the tool and the workpiece, forms the constructive movement of the face in the direction of the axial feed. In this case, the rotation of the workpiece is an auxiliary movement that does not take part in the cutting process, and the movement of the tool imparted to it by the axial feed is insignificant. The direction of the resulting movement of the cutting speed, which corresponds to such a representation, is at a slight angle concerning the face of the gear being cut. This vector determines the values of the actual or working angles on all three blades of the skiving cutter. These angles significantly change the shearing conditions during cutting, the force on the face, and the friction on the flank surfaces. This scheme has been used to analyze the cutting processes using skiving cutters with different blade designs and geometries and also to describe the negative aspects of combined “Super Skiving cutters.”
[1] K. D. Bouzakis, E. Lili, N Michailidis, O. Friderikos, "Manufacturing of cylindrical gears by generating cutting processes: A critical synthesis of analysis methods". CIRP annals, vol.57, no 2, pp. 676-696. 2008
https://doi.org/10.1016/j.cirp.2008.09.001
[2] H. J. Stadtfeld, "Power skiving of cylindrical gears on different machine platforms". Gear technology, vol. 31, no 1, pp. 52-62. 2014
[3] Spath, D., Hühsam, A. "Skiving for high-performance machining of periodic structures". CIRP Annals, vol. 51, no 1, pp. 91-94. 2002
https://doi.org/10.1016/S0007-8506(07)61473-5
[4] T. Tachikawa, D. Iba, N. Kurita, M. Nakamura, I. Moriwaki, "Basic study on calculation of cutting forces useful for reducing vibration in skiving". Journal of Mechanical Design, vol. 139, no 10, pp. 104501. 2017
https://doi.org/10.1115/1.4037625
[5] F. Klocke, C. Brecher, C. Löpenhaus, P. Ganser, J. Staudt, M. Krömer, "Technological and simulative analysis of power skiving". Procedia Cirp, vol. 50, 773-778. 2016
https://doi.org/10.1016/j.procir.2016.05.052
[6] N. Tapoglou, "Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation". The International Journal of Advanced Manufacturing Technology, vol. 100, no 5, pp. 1779-1785. 2019
https://doi.org/10.1007/s00170-018-2790-3
[7] V. Schulze, C. Kühlewein, H. Autenrieth, "3D-FEM modeling of gear skiving to investigate kinematics and chip formation mechanisms". Advanced Materials Research, vol. 223, pp. 46-55. 2011
https://doi.org/10.4028/www.scientific.net/AMR.223.46
[8] P. McCloskey, A. Katz, L. Berglind, K. Erkorkmaz, E. Ozturk, F. Ismail, "Chip geometry and cutting forces in gear power skiving". CIRP Annals, vol. 68, no 1, pp. 109-112. 2019
https://doi.org/10.1016/j.cirp.2019.04.085
[9] H. Onozuka, F. Tayama, Y. Huang, M. Inui, "Cutting force model for power skiving of internal gear". Journal of Manufacturing Processes, vol. 56, pp. 1277-1285. 2020
https://doi.org/10.1016/j.jmapro.2020.04.022
[10] D. Spath, A. Hühsam, "Skiving for high-performance machining of periodic structures". CIRP Annals, vol. 51, no 1, pp. 91-94. 2002
https://doi.org/10.1016/S0007-8506(07)61473-5
[11] A. Antoniadis, "Gear skiving-CAD simulation approach". Computer-Aided Design, vol. 44, no 7, pp. 611-616. 2012.
https://doi.org/10.1016/j.cad.2012.02.003
[12] B. Vargas, M. Zapf, J. Klose, F. Zanger, V. Schulze, "Numerical modelling of cutting forces in gear skiving". Procedia CIRP, vol. 82, pp. 455-460. 2019
https://doi.org/10.1016/j.procir.2019.04.039
[13] C.-Y. Tsai and P. D. Lin, "Gear manufacturing using power-skiving method on six-axis cnc turn-mill machining center," The International Journal of Advanced Manufacturing Technology, vol. 95, no. 1-4, pp. 609-623, 2017.
https://doi.org/10.1007/s00170-017-1154-8
[14] Z. Guo, S.-M. Mao, L. Huyan, and D.-S. Duan, "Research and improvement of the cutting performance of skiving tool," Mechanism and Machine Theory, vol. 120, pp. 302-313, 2018.
https://doi.org/10.1016/j.mechmachtheory.2017.08.004
[15] M. Jaster. "Skiving: a manufacturing renaissance". Gear Technology. pp. 50-54. 2017.
[16] C. Y. Tsai, "Power-skiving tool design method for interference-free involute internal gear cutting". Mechanism and Machine Theory, vol. 164, pp. 104396. 2021
https://doi.org/10.1016/j.mechmachtheory.2021.104396
[17] E. Guo, N. Ren, X. Ren, C. Liu, "An efficient tapered tool having multiple blades for manufacturing cylindrical gears with power skiving". The International Journal of Advanced Manufacturing Technology, vol. 102, pp. 2823-2832. 2019
https://doi.org/10.1007/s00170-018-03239-z
[18] T. Monden, T. Kikuchi, K. Yoshikawa, N. Fujimura, A. Georgoussis. "Super Skiving Cutter An Innovative Process Modification for Gear Skiving". Mitsubishi Heavy Industries Technical Review. vol. 56, no 1, pp. 1-8, 2019.
[19] Y. Yanase, J. Usude, K. Ishizu, T. Kikuchi, M. Ochi, "The latest gear manufacturing technology for high accuracy and efficiency". Mitsubishi Heavy Industries Technical Review, vol. 55, no 3, pp. 1-7. 2018
[20] P. McCloskey, "Virtual model of power skiving cutting mechanics" (Master's thesis, University of Waterloo). 2019
[21] T. Bergs, A. Georgoussis, C. Löpenhaus, "Development of a numerical simulation method for gear skiving". Procedia CIRP, vol. 88, pp. 352-357. 2020
https://doi.org/10.1016/j.procir.2020.05.061
[22] I. Hrytsay, A. Slipchuk, M. Bosansky, "Justification of the choice of parameters for the gear power skiving operation based on computer simulation". Journal of Mechanical Engineering-Strojnicky Casopis, vol. 73, no. 2, pp. 33-44. 2023.
https://doi.org/10.2478/scjme-2023-0020
[23] Zuboriznyy instrument dlya dvokhperekhidnoho narizannya tsylindrychnykh zubchastykh kolis. Pat.45527 A Ukrayiny, B23 F21 // 16 // I. Hrytsay (Ukraine). № 2000042286; Zayavl. 21.04.2000; opubl.15.04.2002, Byul. № 4, kn.1. - S.4-48 [in Ukraine]
[24] I. Hrytsay, I. Aftanaziv, "Pidvyshchennya efektyvnosti dvokhperekhidnoho narizannya zubchastykh kolis chervʺyachnymy frezam z modyfikovanym profilem" ["Increasing the efficiency of two-pass cutting of gears by worm cutters with a modified profile"] // Bulletin of the National Technical University of Ukraine "Kyiv Polytechnic Institute". Mechanical Engineering. vol. 40. Kyiv, pp. 140 - 149. 2001 [in Ukraine]
[25] І. Hrytsaj, "The theoretical and experimental research of the screw type hobs for two-way cutting of cylindrical cog-wheels of large modules". Scientific Research of Universities of Kosice . vol. 3.. pp. 27-31. 2001.