Фізично обґрунтовані нейронні мережі (PINN) є потужним підходом у машинному навчанні, що дозволяє розв’язувати прямі, обернені задачі та задачі ідентифікації, пов’язані з моделями, що описуються дробовими диференціальними рівняннями, за рахунок включення залишків операторних рівнянь, граничних та початкових умов в цільову функцію під час навчання. У пропонованому підході зосереджено увагу на адаптивному оберненому фрактально-орієнтованому PINN, призначеному для моделювання тепло- та вологопереносу у капілярно-пористих матеріалах із фрактальною структурою та ідентифікації невідомих дробових параметрів. Основна ідея полягає в тому, щоб спершу побудувати фрактальну нейронну мережу для прямої задачі, а потім розширити її застосування, перетворивши показники дробових похідних на змінні, що підлягають оптимізації. Додатково до цільової функції включаються синтетичні дані, які забезпечують необхідні умови для розв’язання задачі ідентифікації. Щоб наближений розв’язок правильно відтворював фізичну поведінку системи, компоненти функції втрат (зокрема, відхилення від синтетичних даних, початкових та граничних умов, а також залишки диференціальних рівнянь) зважуються адаптивно на кожній епосі навчання. Аналогічним чином виконується й масштабування градієнтів параметрів, що залучені до процесу тренування. Для підтвердження ефективності та надійності цього підходу наведено декілька прикладів, отриманих за допомогою розробленого програмного забезпечення, що ілюструють його застосування в різнопланових часткових сценаріях і демонструють здатність адаптивного фрактального PINN успішно розв’язувати задачі тепло- та масопереносу у фрактальних капілярно-пористих структурах, а також ідентифікації дробових показників
[1] Y. Sokolovskyy, T. Samotii, I. Kroshnyy, “Physics-Informed Neural Network for Modeling the Process of Heat-and-Mass Transfer Based on the Apparatus of Fractional Derivatives,” 2023 IEEE 17th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), Lviv, February 22-25, 2023, pp. 30-35. https://doi.org/10.1109/CADSM58174.2023.10076540
[2] Y. Sokolovskyy, T. Samotii, “Adaptive Fractional Neural Algorithm for Modeling Heat-and-Mass Transfer,” Bulletin of the National University "Lviv Polytechnic". Series: "Computer Systems of Design. Theory and Practice", vol. 6, no. 3, 2024, pp. 139-153. https://doi.org/10.23939/cds2024.03.139
[3] Y. Sokolovskyy, K. Drozd, T. Samotii, I. Boretska, “Fractional-Order Modeling of Heat and Moisture Transfer in Anisotropic Materials Using a Physics-Informed Neural Network,” Materials, vol. 17, p. 4753, 2024. https://doi.org/10.3390/ma17194753
[4] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
[5] A. B. Golodenko, “Estimation of the adequacy of the fractal model of the atomic structure of amorphous silicon,” Semiconductors, vol. 44, pp. 84–88, 2010. https://doi.org/10.1134/S1063782610010148
[6] N. Engheta, “On fractional calculus and fractional multipoles in electromagnetism,” IEEE Transactions on Antennas and Propagation, vol. 44, no. 4, pp. 554–566, 1996. https://doi.org/10.1109/8.489308
[7] Z.-Y. Li, H. Liu, X.-P. Zhao, W.-Q. Tao, “A multi-level fractal model for the effective thermal conductivity of silica aerogel,” Journal of Non-Crystalline Solids, vol. 430, pp. 43-51, 2015. https://doi.org/10.1016/j.jnoncrysol.2015.09.023
[8] A. Stankiewicz, “Fractional Maxwell model of viscoelastic biological materials,” BIO Web of Conferences, vol. 10, p. 02032, 2018. https://doi.org/10.1051/bioconf/20181002032
[9] Z. Odibat, S. Momani, “The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics,” Computers and Mathematics with Applications, vol. 58, no. 11–12, pp. 2199–2208, 2009. https://doi.org/10.1016/j.camwa.2009.03.009
[10] B. Jin, W. Rundell, “A tutorial on inverse problems for anomalous diffusion processes,” Inverse Problems, vol. 31, no. 3, 2015. https://doi.org/10.1088/0266-5611/31/3/035003
[11] H. R. Ghazizadeh, A. Azimi, M. Maerefat, “An inverse problem to estimate relaxation parameter and order of fractionality in fractional single-phase-lag heat equation,” International Journal of Heat and Mass Transfer, vol. 55, no. 7–8, pp. 2095-2101, 2012. https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.012
[12] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019. https://doi.org/10.1016/j.jcp.2018.10.045
[13] X.-J. Yang, F. R. Zhang, “Local Fractional Variational Iteration Method and Its Algorithms,” Adv. Comput. Math. Appl., vol. 1, no. 3, pp. 139-145, 2012.
[14] M. M. Meerschaert, C. Tadjeran, “Finite difference approximations for fractional advection–dispersion flow equations,” Journal of Computational and Applied Mathematics, vol. 172, pp. 65–77, 2004. https://doi.org/10.1016/j.cam.2004.01.033
[15] Y. Sokolovskyy, V. Shymanskyi, M. Levkovych, V. Yarkun, “Mathematical modeling of heat and moisture transfer and rheological behavior in materials with fractal structure using the parallelization of predictor-corrector numerical method,” 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, 2016, pp. 108-111. https://doi.org/10.1109/DSMP.2016.7583518
[16] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, “Physics-informed neural networks (PINNs) for fluid mechanics: A review,” Acta Mechanica Sinica/Lixue Xuebao, vol. 37, no. 12, pp. 1727–1738, 2021.
[17] M. Mahmoudabadbozchelou, G. E. Karniadakis, and S. Jamali, “nn-PINNs: Non-Newtonian physics-informed neural networks for complex fluid modeling,” Soft Matter, vol. 18, no. 1, pp. 172–185, 2022.
[18] N. Sukumar, A. Srivastava, “Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks,” Comput. Methods Appl. Mech. Engrg., vol. 389, p. 114333, 2022. https://doi.org/10.1016/j.cma.2021.114333
[19] D. Amini, E. Haghighat, R. Juanes, “Physics-informed neural network solution of thermo–hydro–mechanical processes in porous media,” J. Eng. Mech., vol. 148, no. 11, p. 04022070, 2022. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002156
[20] Z. Zhou, L. Wang, Z. Yan, “Deep neural networks learning forward and inverse problems of two-dimensional nonlinear wave equations with rational solitons,” Comput. Math. Appl., vol. 151, pp. 164–171, 2023. https://doi.org/10.1016/j.cma.2021.114333
[21] J. Wang, X. Peng, Z. Chen, B. Zhou, Y. Zhou, and N. Zhou, “Surrogate modeling for neutron diffusion problems based on conservative physics-informed neural networks with boundary conditions enforcement,” Annals of Nuclear Energy, vol. 176, p. 109234, 2022.
[22] H. Gao, M. J. Zahr, J.-X. Wang, “Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems,” Comput. Methods Appl. Mech. Engrg., vol. 390, p. 114502, 2022. https://doi.org/10.1016/j.cma.2021.114502
[23] S. Wang, H. Zhang, X. Jiang, “Physics-informed neural network algorithm for solving forward and inverse problems of variable-order space-fractional advection–diffusion equations,” Neurocomputing, vol. 535, pp. 64–82, 2023.
[24] S. Cuomo, M. De Rosa, F. Giampaolo, S. Izzo, V. Schiano Di Cola, “Solving groundwater flow equation using physics-informed neural networks,” Comput. Math. Appl., vol. 145, pp. 106–123, 2023. https://doi.org/10.1016/j.camwa.2023.05.036
[25] Q.-Z. He, A. M. Tartakovsky, “Physics-informed neural network method for forward and backward advection-dispersion equations,” Water Resour. Res., vol. 57, no. 7, p. e2020WR029479, 2021.
[26] T. Bandai, T. A. Ghezzehei, “Forward and inverse modeling of water flow in unsaturated soils with discontinuous hydraulic conductivities using physics-informed neural networks with domain decomposition,” Hydrol. Earth Syst. Sci., vol. 26, no. 16, pp. 4469–4495, 2022. https://doi.org/10.5194/hess-26-4469-2022
[27] F. V. Difonzo, L. Lopez, S. F. Pellegrino, “Physics-informed neural networks for an inverse problem in peridynamic models,” Eng. Comput., 2024.
[28] L. Yang, X. Meng, G. E. Karniadakis, “B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data,” J. Comput. Phys., vol. 425, p. 109913, 2021. https://doi.org/10.1016/j.jcp.2020.109913
[29] G. Pang, L. Lu, and G. E. Karniadakis, “fPINNs: Fractional Physics-Informed Neural Networks,” SIAM Journal on Scientific Computing, vol. 41, no. 4, pp. A2603–A2626, 2019.
[30] Y. Ye, H. Fan, Y. Li, X. Liu, H. Zhang, “Deep neural network methods for solving forward and inverse problems of time fractional diffusion equations with conformable derivative,” Neurocomputing, vol. 509, pp. 177–192, 2022. https://doi.org/10.1016/j.neucom.2022.08.030
[31] P. P. Mehta, G. Pang, F. Song, and G. E. Karniadakis, “Discovering a universal variable-order fractional model for turbulent Couette flow using a physics-informed neural network,” Fractional Calculus and Applied Analysis, vol. 22, no. 6, pp. 1675–1688, 2019. https://doi.org/10.1515/fca-2019-0086
[32] Sousa, E. "How to approximate the fractional derivative of order 1<α≤2." International Journal of Bifurcation and Chaos, 2012, 22(12), 1250075. https://doi.org/10.1142/S0218127412500757
[33] Hadamard, J. (1902) "Sur les Problèmes aux Dérivées Partielles et Leur Signification Physique." Princeton University Bulletin, 1902, 13, 49-52.
[34] Jin, B.; Lazarov, R.; Zhou, Z. "An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data." IMA Journal of Numerical Analysis, 2015, 36, 197–221. https://doi.org/10.1093/imanum/dru063