INTENSIFICATION OF THE WASTEWATER TREATMENT PROCESS IN THE PRODUCTION OF SANITARY WARE USING COAGULANTS AND FLOCCULANTS

This article discusses the issue of sludge water treatment generated in the production of ceramic sanitary ware. Experimental studies were conducted on the effectiveness of physical and chemical treatment methods, in particular the use of coagulants (aluminium sulphate) and flocculants of various types (anionic, non-ionic, cationic). The optimal parameters for water treatment have been determined, which allow for the maximum removal of suspended particles and minimise the formation of sediment. It has been established that the use of aluminium sulphate in a concentration that does not lower the pH of the medium below 6.0–6.5, in combination with flocculants, ensures effective water clarification. The best result was obtained with a flocculant dosage of 250 g/t in a ratio of anionic to non-ionic 1:1. The combined use of coagulants and flocculants made it possible to reduce the residual turbidity of water to <5 mg/dm³ and accelerate the precipitation of finely dispersed particles by 1.5–2 times compared to traditional methods. An improved technological scheme for purification has been proposed, which includes coagulation, flocculation, settling and centrifugation, with the possibility of further use of purified water in the production cycle. The results obtained can be used to modernise local treatment facilities of ceramic industry enterprises and introduce closed water use systems. The proposed reagent selection method is adaptable to wastewater of similar composition and reduces the environmental impact.

 

1. Almecija, M. C., Martinez-Ferez, A., Guadix, A., Paez, M. P., & Guadix, E. M. (2009). Influence of the cleaning temperature on the permeability of ceramic membranes. Desalination, 245(1–3), 708–713. doi: https://doi.org/10.1016/j.desal.2009.02.041

2. Barredo-Damas, S., Alcaina-Miranda, M. I., Bes-Piá, A., Iborra-Clar, M. I., Iborra-Clar, A., & Mendoza-Roca, J. A. (2010). Ceramic membrane behavior in textile wastewater ultrafiltration. Desalination, 250(2), 623–628. doi: https://doi.org/10.1016/j.desal.2009.09.037

3. Barros, M., Bello, P., Roca, E., & Casares, J. (2007). Integrated pollution prevention and control for heavy ceramic industry in Galicia (NW Spain). Journal of Hazardous Materials, 141(3), 680–692. doi: https://doi.org/10.1016/j.jhazmat.2006.07.037

4. Bosiuk, A., Shkop, A., Kulinich, S., Samoilenko, D., Shestopalov, O., & Tykhomyrova, T. (2024). Multi-component wastewater from finely dispersed  impurities treatment intensification. Ecological Questions, 35(4), 1–18. doi: https://doi.org/10.12775/eq.2024.055

5. Budnyk, A. F., Yuskaiev, V. B., & Budnyk, O. A. (2008). Nemetalevi materialy v suchasnomu suspilstvi: Navchalnyy posibnyk. Sumy: SumDU. (in Ukranian)

6. Chong, M. F., Lee, K. P., Chieng, H. J., & Syazwani Binti Ramli, I. I. (2009). Removal of boron from ceramic industry wastewater by adsorption–flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer. Water Research, 43(13), 3326–3334. doi: https://doi.org/10.1016/j.watres.2009.04.044

7. Ebrahimi, M., Kerker, S., Daume, S., Geile, M., Ehlen, F., Unger, I., Schütz, S., & Czermak, P. (2014). Innovative ceramic hollow fiber membranes for recycling/reuse of oilfield produced water. Desalination and Water Treatment, 55(13), 3554–3567. doi: https://doi.org/10.1080/19443994.2014.947780

8. Ebrahimi, M., Busse, N., Kerker, S., Schmitz, O., Hilpert, M., & Czermak, P. (2015). Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration. Membranes, 6(1), 7. doi: https://doi.org/10.3390/membranes6010007

9. Elias, S. H., Mohamed, M., Nor-Anuar, A., Muda, K., Hassan, M. A. H. M., Nor Othman, M., & Chelliapan, S. (2014). Ceramic industry wastewater treatment by rhizofiltration system – Application of water hyacinth bioremediation. IIOAB-India Journal, 5(1), 6–14.

10. Hua, F. L., Tsang, Y. F., Wang, Y. J., Chan, S. Y., Chua, H., & Sin, S. N. (2007). Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chemical Engineering Journal, 128(2–3), 169–175. doi: https://doi.org/10.1016/j.cej.2006.10.017

11. Khomenko, О. S., Datsenko, B. M., & Fomenko, G. V. (2022). Determination of approaches to the development of ceramic compositions for the manufacture of facial bricks. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 98–107. doi: https://doi.org/10.32434/0321-4095-2022-145-6-98-107

12. Martínez-García, C., Eliche-Quesada, D., Pérez-Villarejo, L., Iglesias-Godino, F. J., & Corpas-Iglesias, F. A. (2012). Sludge valorization from wastewater treatment plant to its application on the ceramic industry. Journal of Environmental Management, 95, 343–348. doi: https://doi.org/10.1016/j.jenvman.2011.06.016

13. Maura, J., Atreya, S., & Arshi, A. (2023). The Treatment of Wastewater, Recycling and Reuse - Past, Present, and in the Future. International Journal of Science and Research (IJSR), 12(11), 210–222. doi: https://doi.org/10.21275/sr231013064713

14. Onen, V., & Gocer, M. (2018). The effect of single and combined coagulation/flocculation methods on the sedimentation behavior and conductivity of bentonite suspensions with different swelling potentials. Particulate Science and Technology, 37(7), 827–834. doi: https://doi.org/10.1080/02726351.2018.1454993

15. Onyshchuk, O. (2023). To the study of the flocculation and coagulation process in the purification of water for industrial application. Herald of Khmelnytskyi National University. Technical Sciences, 317(1), 151–154. doi: https://doi.org/10.31891/2307-5732-2023-317-1-151-154

16. Sari Erkan, H. (2019). Ceramic Industry Wastewater Treatment By Chemical Coagulation Process: A Statistical Optimization of Operating Parameters. Sakarya University Journal of Science, 23(2), 233–243. doi: https://doi.org/10.16984/saufenbilder.385584

17.. Shestopalov, O., Briankin, O., Tseitlin, M., Raiko, V., & Hetta, O. (2019). Studying patterns in the flocculation of sludges from wet gas treatment in metallurgical production. Eastern-European Journal of Enterprise Technologies, 5(10(101)), 6–13. doi: https://doi.org/10.15587/1729-4061.2019.181300

18.  Shkop, A., Tseitlin, M., Shestopalov, O., & Raiko, V. (2017 a). Study of the strength of flocculated structures of polydispersed coal suspensions. Eastern-European Journal of Enterprise Technologies, 1(10(85)), 20–26. doi: https://doi.org/10.15587/1729-4061.2017.91031

19. Shkop, A., Tseitlin, M., Shestopalov, O., & Raiko, V. (2017 b). A study of the flocculs strength of polydisperse coal suspensions to mechanical influences. Eureka: Physics and Engineering, 1, 13–20. doi: https://doi.org/10.21303/2461-4262.2017.00268

20. Shurygin, M., Guenther, C., Fuchs, S., & Prehn, V. (2021). Effective treatment of the wastewater from ceramic industry using ceramic membranes. Water Science and Technology, 83(5), 1055–1071. doi: https://doi.org/10.2166/wst.2021.039

21. Yaroshenko, K. K., & Shabanov, M. V. (2010). Analiz stokiv keramičnoho kombinatu ta rozrobka tekhnolohiy yikh ochyshchennya: XIII Mizhnarodna naukovo-praktychna konferentsiya, Ekolohiya. Lyudyna. Suspilstvo, 2010, Kyiv: NTUU "KPI".

22. Yaroshenko, K. K., & Shabanov, M. V. (2011). Efektyvnist koahulyatsiynoho ochyshchennya vodnykh stokiv keramichnoho vyrobnytstva: Zbirnyk naukovykh prats Instytutu heokhimiyi navkolyshnoho seredovyshcha, 19, 96–100.