У статті проаналізовано способи вилучення рідких вуглеводнів складу С5+ з нафтового та природного газів. Розглянуто головні проблеми та недоліки поточних технологій. Вивчено основні фізико-хімічні властивості комерційних вазелінових олив і їхню здатність абсорбувати вуглеводні складу С5+ із газів. Встановлено залежність між довжиною карбонового ланцюга та здатністю абсорбуватися вазеліновими оливами.
[1] Boichenko, S. Innovative Chemmotological Thought as an Integrated System of Knowledge. Chem. Chem. Technol. 2014, 8, 349–358. https://doi.org/10.23939/chcht08.03.349
[2] Al-Rumaihi, A.; Shahbaz, M.; Mckay, G.; Mackey, H.; Al- Ansari, T. A Review of Pyrolysis Technologies and Feedstock: A Blending Approach for Plastic and Biomass towards Optimum Biochar Yield. Renewable Sustainable Energy Rev. 2022, 167, 112715. https://doi.org/10.1016/j.rser.2022.112715
[3] Pavliukh, L.; Boichenko, S.; Onopa, V.; Tykhenko, O.; Topilnytskyy, P.; Romanchuk, V.; Samsin, I. Resource Potential for Biogas Production in Ukraine. Chem. Chem. Technol. 2019, 13, 101–106. https://doi.org/10.23939/chcht13.01.101
[4] Bee, S.; Bhagvara, S. Membrane Based Gas Separation: Principle, Applications and Future Potential; 2014.
[5] Food Standards Agency. Survey of Printing Inks and Mineral Oils; London, 2011, December 15. Archived from the original on May 15, 2012.
[6] Li, G.; Kujawski, W.; Valek, R.; Koter, S. A Review – The Development of Hollow Fibre Membranes for Gas Separation Processes. Int. J. Greenhouse Gas Control 2021, 104, 103195. https://doi.org/10.1016/j.ijggc.2020.103195
[7] Yang, L.; Cheng, X.; Huang, C.; Liu, S.; Ning, B.; Wang, K. A Review of Gas-Liquid Separation Technologies: Separation Mechanism, Application Scope, Research Status, and Development Prospects. Chem. Eng. Res. Des. 2024, 201, 257–274. https://doi.org/10.1016/j.cherd.2023.12.009
[8] Yang, L.; Zhang, J.; Ma, Y.; Hu, J.; Wang, J. Experimental and Numerical Study of Separation Characteristics in Gas-Liquid Cylindrical Cyclone. Chem. Eng. Sci. 2020, 214, 115362. https://doi.org/10.1016/j.ces.2019.115362
[9] Lavenson, D.; Kelkar, A.; Daniel, A.; Mohammad, S.; Kouba, G.; Aichele, C. Gas Evolution Rates – A Critical Uncertainty in Challenged Gas-Liquid Separations. J. Pet. Sci. Eng. 2016, 147, 816–828. https://doi.org/10.1016/j.petrol.2016.07.015
[10] Suwarno; Darma, I. S. Dielectric Properties of Mixtures Between Mineral Oil and Natural Ester. Proc. Int. Symp. Electr. Insul. Mater. (ISEIM) 2008, 514–517. https://doi.org/10.1109/ISEIM.2008.4664471
[11] Boichenko, S.; Yakovlieva, A.; Zubenko, S.; Konovalov, S.; Shkilniuk, I.; Artyukhov, A.; Wit, B.; Czarnocki, K.; Wołowiec, T. Properties of Components of Renewable Motor Fuel Based on Plant Oils and Assessment of Their Compatibility with Traditional Fuels. Energies 2024, 17, 6390. https://doi.org/10.3390/en17246390
[12] Tien, C. Introduction to Adsorption: Basics, Analysis and Applications; Elsevier, 2019. https://www.sciencedirect.com/science/book/9780128164464
[13]Drioli, E.; Giorno, L. Gas Separation. In Encyclopedia of Membranes; Springer, 2015. https://doi.org/10.1007/978-3-642- 40872-4_112-1
[14] Aregbe, A. Natural Gas Flaring–Alternative Solutions. World Journal of Engineering and Technology 2017, 5, 139–153. https://doi.org/10.4236/wjet.2017.51012
[15] CODE of the gas transmission system. https://tsoua.com/wp- content/uploads/2020/12/GTS_Code_Eng_01-01-2021.pdf
[16] Pyshyev, S.; Lypko, Y.; Demchuk, Y.; Kukhar, O.; Korchak, B.; Pochapska, I.; Zhytnetskyi, I. Characteristics and Applications of Waste Tire Pyrolysis Products: A Review. Chem. Chem. Technol. 2024, 8, 244–257. https://doi.org/10.23939/chcht18.02.244
[17] de Morais, E. G.; da Silveira, J. T.; Schüler, L. M. Biomass Valorization via Pyrolysis in Microalgae-Based Wastewater Treatment: Challenges and Opportunities for a Circular Bioeconomy. J. Appl. Phycol. 2023, 35, 2689–2708. https://doi.org/10.1007/s10811-023-03104-x
[18] Pyshyev S., Lypko Y., Chervinskyy T., Fedevych O., Kułażyński M., Pstrowska K. Application of Tyre Derived Pyrolysis Oil as a Fuel Component. S. Afr. J. Chem. Eng. 2023, 43, 342–347. https://doi.org/10.1016/j.sajce.2022.12.003
[19] Miroshnichenko, D.; Shmeltser, K.; Kormer, M.; Sahalai, D.; Pyshyev, S.; Kukhar, O.; Korchak, B.; Chervinskyy, T. Influence of Raw Materials and Technological Factors on the Sorption Properties of Blast-Fuel Coke. ChemEngineering 2024, 8, 30. https://doi.org/10.3390/chemengineering8020030
[20] Ribun V., Boichenko S., Kale U. Advances in Gas-to-Liquid Technology for Environmentally Friendly Fuel Synthesis: Analytical Review of World Achievements. Energy Rep. 2023, 9, 5500. https://doi.org/10.1016/j.egyr.2023.04.372