Розглянуто вирішення вказаних задач за допомогою сплайнів. Із застосуванням сплайнів отримано єдину модель для усіх трьох задач й поєднано простоту розрахунків із гнучкістю моделі. Для фільтрації та сегментації акустичних сигналів застосовуються сплайн-фільтри, аналогічні фільтрам Савицького–Голея. Різна ширина фрагментів сплайна дає змогу досягти різного згладжування й відповідно виділення фрагментів різної деталізації. Інструментом виділення тонів серця є частотно-часовий LSS-аналіз, де розклад відбувається завдяки різномасштабній апроксимації сплайнами за методом найменших квадратів. Для виділення значимих частотно-часових складових застосовують селекцію коефіцієнтів розкладу на значимість за t-критерієм Стьюдента. Для врахування наявності сигналів у різних частотних смугах розкладу застосовано оригінальний алгоритм зворотної оцінки залишків наближення. Результатом є набір параметрів частотно-часового розкладу, що детально характеризують тони серця. Це дає змогу порівнювати схожість тонів у різні періоди спостереження, формувати узагальнений тон та використовувати вказані параметри для класифікації серцевих тонів.