Розроблено математичні моделі визначення розподілу температури в елементах турбогенераторів, які геометрично описано ізотропним півпростором та термочутливим простором з локально зосередженими джерелами нагрівання. Для цього з використанням теорії узагальнених функцій у зручній формі записано вихідні диференціальні рівняння теплопровідності з крайовими умовами. Для термочутливого простору (теплофізичні параметри залежать від температури) вихідне нелінійне рівняння теплопровідності та нелінійні крайові умови лінеаризовано з використанням перетворення Кірхгофа, відносно якого отримано лінійне диференціальне рівняння. Для розв'язування крайових задач теплопровідності використано інтегральне перетворення Ганкеля і внаслідок отримано аналітичні розв'язки в зображеннях. До цих розв'язків застосовано обернене інтегральне перетворення Ганкеля, яке дало змогу отримати остаточні аналітичні розв'язки вихідних задач. Отримані аналітичні розв'язки подано у вигляді невласних збіжних інтегралів. Для конструкційного матеріалу термочутливого простору використано лінійну залежність коефіцієнта теплопровідності від температури. У результаті отримано зручну формулу для визначення температурного поля, яка дає змогу аналізувати температурні режими в термочутливому середовищі. Для визначення числових значень температури в наведених конструкціях, а також аналізу теплообміну в елементах турбогенераторів, зумовленого різними температурними режимами завдяки нагріванню локально зосередженими джерелами тепла, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, які відображають поведінку поверхонь, побудованих із використанням числових значень розподілу безрозмірної температури залежно від просторових безрозмірних координат. Отримані числові значення температури свідчать про відповідність наведених математичних моделей визначення розподілу температури реальному фізичному процесу. Програмні засоби також дають змогу аналізувати середовища із локально зосередженим нагріванням щодо їх термостійкості. Як наслідок, стає можливим її підвищити, визначити допустимі температури нормальної роботи турбогенераторів, захистити їх від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й всієї конструкції.
[1] Bayat, A., Moosavi, H., & Bayat, Y. (2015). Thermo-mechanical analysis of functionally graded thick spheres with linearly time-dependent temperature. Scientia Iranica, 22(5), 1801–1812.
[2] Carpinteri, A., & Paggi, M. (2008). Thermoelastic mismatch in nonhomogeneous beams. J. Eng. Math, 61, 2–4, 371–384.
[3] Gavrysh, V. I., & Fedasjuk, D. V. (2012). Modeljuvannja temperaturnyh rezhymiv u kuskovo-odnoridnyh strukturah. Lviv: Vyd-vo Nac. un-tu "L'vivs'ka politehnika",176–178. [In Ukrainian].
[4] Ghannad, M., & Yaghoobi, M. P. (2015). A thermoelasticity solution for thick cylinders subjected to thermo-mechanical loads under various boundary conditions. Int. Journal of Advanced Design & Manufacturing Technology, 8(4), 1–12.
[5] Harmatii, H. Yu., Popovych, V. S., & Krul, M. (2019). Vplyv termochutlyvosti materialu na neustalenyi teplovyi stan bahatosharovoi plastyny. Fizyko-khimichna mekhanika materialiv, 1, 98–104. [In Ukrainian].
[6] Havrysh, V. I., Baranetskiy, Ya. O., & Kolyasa, L. I. (2018). Investigation of temperature modes in thermosensitive non-uniform elements of radioelectronic devices. Radio Electronics, Computer Sciense, Control, 3(46), 7–15.
[7] Havrysh, V. I., Kolyasa, L. I., & Ukhanka, O. M. (2019). Determination of temperature field in thermally sensitive layered medium with inclusions. Naukovyi Visnyk NHU, 1, 94–100.
[8] Jabbari, M., Karampour, S., & Eslami, M. R. (2011). Radially symmetric steady state thermal and mechanical stresses of a poro FGM hollow sphere. International Scholarly Research Network ISRN Mechanical Engineering, 3, 1–7. https://doi.org/10.5402/2011/305402
[9] Koliano, Iu. M. (1992). Metody teploprovodnosti i termouprugosti neodnorodnogo tela. Kyiv: Naukova dumka, 268 p. [In Russian].
[10] Korn, G., & Korn, T. (1977). Spravochnik po matematike dlia nauchnykh rabotnikov i inzhenerov. Moscow: Nauka, 650 p. [In Russian].
[11] Lukashevych, A. (2019). Temperaturne pole u zoni kontaktu pid chas rotatsiinoho zvariuvannia metaliv tertiam. Fizyko-khimichna mekhanika materialiv, 1, 41–46. [In Ukrainian].
[12] Mohazzab, A. H., & Jabbari, M. (2011). Two-Dimensional Stresses in a Hollow FG Sphere with Heat Source. Advanced Materials Research, 264–265, 700–705. https://doi.org/10.4028/scientific.net/amr.264-265.700
[13] Podstrigach, Ia. S., Lomakin, V. A., & Koliano, Iu. M. (1984). Termouprugostь tel neodnorodnoi struktury. Moscow: Nauka, 354 p. [In Russian].
[14] Yangian, Xu., & Daihui, Tu. (2009). Analysis of steady thermal stress in a ZrO2/FGM/Ti-6Al-4V composite ECBF plate with temperature-dependent material properties by NFEM, WASE. Int. Conf. on Informa. Eng., 2–2, 433–436