Analysis of thermal comfort models of users of public urban and intercity transport
Надіслано: Квітень 19, 2022
Переглянуто: Травень 26, 2022
Прийнято: Березень 30, 2022
Department of Electronic Device and Information Technology, Lviv Polytechnic National University
Department of Automotive Engineering, Lviv Polytechnic National University
Department of Automotive Engineering, Lviv Polytechnic National University

Regardless  of  the  vehicle's  application,  the  thermal  comfort  of  the  vehicle's occupants and driver is given increased attention. Maintaining a sense of thermal comfort, whether for  safety,  health  or  occupant  thermal  well-being  reasons,  is  one  of  the  most  important  goals  of heating,  ventilation  and  air  conditioning  (HVAC)  systems.  There  are  a  significant  number  of physical  variables  that  affect  thermal  comfort.  Therefore,  evaluating  thermal  comfort  has  always been a complex issue and has attracted the attention of researchers. The feeling of thermal comfort is provided  by  factors  that  depend  on  the  heat  exchange  between  the  human  body  and  the  external environment.  It  is  well  known  that  one  of  the  requirements  to  be  fulfilled  is  to  find  a  person  in thermal neutrality in the environment according to the comfort equation. The  article  describes  and  evaluates  the  following  indicators:  DTS  (dynamic  thermal sensitivity), TS (thermal sensitivity), PMV (predicted mean voice) and PPD (predicted percentage of 
dissatisfaction).  The  most  common  models  for  evaluating  thermal  comfort,  namely  the  Predicted Mean Vote (PMV), Taniguchi’s model, Zhang’s model and Nilsson’s model in a variety of car cabin conditions, have been reviewed. The limitations of these models in terms of the objectivity of the results obtained are analysed. 

[1]  Marcus  Vinícius  Marques  Hott,  Gustavo  Inácio  Bicalho,  Leonardo  Vinícius  Mendes  Pereira,  Cristiana Brasil  Maia  “Subjective  evaluation  of  thermal  comfort  on  a  vehicle”,  20th  International  Congress  of  Mechanical Engineering, November 15-20, 2009. 
[2]  M.  Ivanescu,  C.  Neacsu,  S.  Tabacu,  I.  Tabacu,  “The  human  thermal  comfort  evaluation  inside  the passenger compartment”, F2010-C-044. 
[3]  P.  Fanger.  “Assessment  of  man’s  thermal  comfort  in  practice”,  British  Journal  of  Industrial  Medicine, 30:313–324, 1973, 
[4]  ISO  7730  –  Moderate  thermal  environments  –  Determination  of  the  PMV  and  PPD  indices  and specification for thermal comfort, International Standards Organization, 1984. 
[5] D. P.Wyon, S.Larsson, B. Foresgren, I. Lundfren, “Standard procedures for assessing Vehicle Climate with a Thermal Manikin”, SAE Paper 890049, 1989, 
[6] M C Gameiro da Silva, ”Measurements of comfort in vehicles”,Meas. Sci. Technol. 13 R41–R60, 2002, 
[7]  ASHRAE  Standard  55-92  Thermal  Environmental  Conditions  for  Human  Occupancy  (Atlanta,  GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.) 
[8] D. Hintea , J. Kemp , J. Brusey , E. Gaura, N. Beloe, “Applicability of Thermal Comfort Models to Car Cabin  Environments”,    ICINCO2014  11th  International  Conference  on  Informatics  in  Control,Automation  and Robotics, pp 769-776, 2014, 
[9] J. van Hoof, “Forty years of Fanger’s model of thermal comfort:l comfort for all?”, Indoor Air Journal, 18:182–201, 2008, 
[10] E. Arens, H. Zhang, C. Huizenga, “Partial and whole-body thermal sensation and comfort, part II: Non-uniform  environmental  condition”.  Journal  of  Thermal  Biology,  31:60–66,2006. 
[11] M. Nakamura, T.Yoda,  L. Crawshaw, S. Yasuhara, Y. Saito, M. Kasuga, K. Nagashima, K. Kanosue, “Regional  differences  in  temperature  sensation  and  thermal  comfort  in  humans”.  Journal  of  Applied  Physiology, 105:1897–1906, 2008, 
[12]  A.  Bogdan,  “Case  study  assessment  of  local  and  general  thermal  comfort  by  means  of  local  skin temperature”.  International  Journal  of  Ventilation,  10:291–300,  2011, 
[13] Y. Taniguchi, A. Hiroshi and F. Kenji, “Study on car air conditioning system controlled by car occupants’ 
skin temperatures - part 1: research on a method of quantitative evaluation of car occupants”, Technical report, SAE 
Paper, 1992, 
[14]  H.  Zhang,  “Human  Thermal  Sensation  and  Comfort  in  Transient  and  Non-Uniform  Thermal Environments”, PhD thesis, University of California, Berkeley, 2003. 
[15]  X.  Luo,  W.Hou,  Y.  Li,  Z.  Wang,  “A  fuzzy  neural  network  model  for  predicting  clothing  thermal comfort”.  -  Computers  and  Mathematics  with  Applications,  53:1840–1846,  2007, 
[16] Y. Cheng, J. Niu, N. Gao, “Thermal comfort models: A review and numerical investigation”, Building and Environment, 47:13–22, 2012, 
[17]  H.  Nilsson,  “Comfort  Climate  Evaluation  with  Thermal  Manikin  Methods  and  Computer  Simulation Models”, PhD thesis, Royal Institute of Technology, 2004. 
[18] Nilsson, H. and Holmer, I. (2002). Definitions and measurements of equivalent temperature. Technical report, The Climate Group, National Institute for Working Life, Solna, Sweden. 
[19]  M.  Almeida,  A.Xavier,  A.  Michaloski,  A  Review  of  Thermal  Comfort  Applied  in  Bus  Cabin Environments, Appl. Sci., 10, 8648; doi:10.3390/app10238648, 2020, 
[20] D. Wyon, S. Larsson, B. Forsgren, I. Lundgren, “Standard procedures for assessing vehicle climate with a thermal manikin”, SAE Technical Paper Series, 1e11. No 890049, 1989. 
[21] Y. Taniguchi, A. Hiroshi, F. Kenji, “Study on car air conditioning system controlled by car occupants` skin temperatures - Part 1: research on a method of quantitative evaluation of car occupants` thermal sensations by skin temperature”, SAE Technical Paper Series, No. 920169, 1992, 
[22] M. Hagino, H. Junichiro, “Development of a method for predicting comfortable airflow in the passenger compartment”, SAE Technical Paper Series, No.922131, 1992, 
[23] K. Matsunaga, F. Sudo, S. Tanabe, TL. Madsen, “Evaluation and measurement of thermal comfort in the vehicles with a new thermal manikin”, SAE Paper Series; No.931958, 1993, 
[24] R de Dear, J. Ring, P. Fanger, “Thermal sensation resulting from sudden ambient temperature changes”, Indoor Air, 3:181-92, 1993, 
[25] X. Wang.”Thermal comfort and sensation under transient conditions”, Ph.D. dissertation, Department of energy technology, division of heating and ventilation, The Royal Institute of Technology, Sweden. 1994. 
[26]  I.  Kohri,  T.  Moschida,”Evaluation  method  of  thermal  comfort  in  a  vehicle  with  a  dispersed  two-node model.  Part  1-development  of  dispersed  two-node  model”,  Journal  of  Human-Environmental  System,  6(1):19-29, 2002. 
[27]  I.  Kohri,  T.  Moschida,”Evaluation  method  of  thermal  comfort  in  a  vehicle  with  a  dispersed  two-node model.  Part  2 - development  of  new  evaluation”,  Journal  of  Human-Environmental  System,  6(2):77-91,  2003, 
[28] Y. Guan, M. Hosni, B. Jones, T Gielda, “Investigation of human thermal comfort under highly transient conditions  for  automobile  applications  -  part1:  experimental  design  and  human  subject  testing  implementation”, ASHRAE Transactions, 109(2):885-97, 2003 
[29] Y. Guan, M. Hosni, B. Jones, T. Gielda, “Investigation of human thermal comfort under highly transient conditions for automobile applications - part2: thermal sensation modelling”, ASHRAE Transactions 109(2), 2003. 
[30] K. Lomas, D. Fiala, M. Stohrer, “First principles modeling of thermal sensation responses in steady-state and transient conditions”, ASHRAE Transaction, 79-87, 2003. 
[31]  D.  Fiala,  A.  Psikuta,  G.Jendritzky,  S.  Paulke,  D.  Nelson,  A.  Van  Marken  Lichtenbelt,  D.  Wounter, “Physiological modeling for technical, clinical and research applications”, Frontiers in Bioscience, S2:939-68, 2010, 
[32] I. Kernytskyy, Y. Yakovenko, O. Horbay, ... K. Rusakov , E. Koda, “Development of comfort and safety performance of passenger seats in large city buses” Energies, 14(22), 7471, 2021,