Acrylic plant oil-based monomers with high content of oleic acid esters

2021;
: 230-236
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
North Dakota State University

New acrylic monomers were obtained via transesterification of olive, canola, and high-oleic soybean oils by N-hydroxyethylacrylamide. The kinetic features of homopolymerization of these monomers were studied and the influence of linoleic (C18: 2) and linolenic (C18: 3) acid esters on the polymerization rate and the molecular weight of homopolymers were compared. It was found that the chain transfer and propagation rate constants increase in monomer’s range: olive (CM = 0.016) <high-oleic soybean (CM = 0.018) <canola (CM = 0.025). Features of homopolymerization are associated with varying degrees of unsaturation of fatty acid fragments.

1. Papageorgiou, G. (2018). Thinking Green: Sustainable Polymers from Renewable Resources. Polymers, 10, 952. doi:10.3390/polym10090952
https://doi.org/10.3390/polym10090952
2. Caillol, S. (Ed). (2021). Natural Polymers and Biopolymers II. Switzerland: MDPI.
https://doi.org/10.3390/molecules26010112
3. Sharmin, E., Zafar, F., Akram, D., Alam, M., & Ahmad, S. (2015). Recent advances in vegetable oils based environment friendly coatings: A review. Ind. Crops Prod., 76, 215-229. doi: 10.1016/j.indcrop. 2015.06.022
https://doi.org/10.1016/j.indcrop.2015.06.022
4. Gunstone, F. D. (2001). Chemical reactions of fatty acids with special reference to the carboxyl group. European Journal of Lipid Science and Technology, 103 (5), 307-314. doi: 10.1002/1438-9312(200105)103:5< 307::AID-EJLT307>3.0.CO;2-D
https://doi.org/10.1002/1438-9312(200105)103:5<307::AID-EJLT307>3.0.CO;2-D
5. Igwe, I. & Ogbobe, O. (2000). Studies on the properties of polyester and polyester blends of selected vegetable oils. Journal of Applied Polymer Science, 75, 1441-6. doi: 10.1002/(SICI)1097-4628(20000321)75:12< 1441::AID-APP1>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1097-4628(20000321)75:12<1441::AID-APP1>3.0.CO;2-P
6. Gultekin, G., Atalay-Oral, C., Erkal, S., Sahin, F., Karastova, D., Tantekin-Ersolma,z S. B. & Guner, F. S. (2009). Fatty acid-based polyurethane films for wound dressing applications. Journal of Materials Science: Materials in Medicine, 20, 421-431. doi: 10.1007/s10856-008-3572-5
https://doi.org/10.1007/s10856-008-3572-5
7. Guner, F.S., Yagci. Y. & Erciyes, A.T. (2006). Polymers from Triglyceride Oils. Progress in Polymer Science, 31, 633-670. doi:/10.1016/j.progpolymsci. 2006.07.001.
https://doi.org/10.1016/j.progpolymsci.2006.07.001
8. Tarnavchyk, I., Popadyuk, A., Popadyuk, N. & Voronov A. (2015). Synthesis and Free Radical Copolymerization of a Vinyl Monomer from Soybean Oil. ACS Sustainable Chem. Eng., 3, 1618−1622. doi:10.1021/ acssuschemeng.5b00312
https://doi.org/10.1021/acssuschemeng.5b00312
9. Demchuk, Z., Shevchuk, O., Tarnavchyk, I., Kirianchuk, V., Kohut, A., Voronov, S. & Voronov A. (2016). Free Radical Polymerization Behavior of the Vinyl Monomers from Plant Oil Triglycerides. ACS Sustainable Chem. Eng. 4, 6974-6980. doi:10.1021/ acssuschemeng.6b01890
https://doi.org/10.1021/acssuschemeng.6b01890
10. Mao, X., Chen, W., Huyan, Z., Sherazi, H. & Yu X. (2020). Impact of linolenic acid on oxidative stability of rapeseed oils. Journal of Food Science and Technology, 57, 3184-3192. doi:10.1007/s13197-020-04349-x
https://doi.org/10.1007/s13197-020-04349-x
11. Lim, S. (2018, October) Drivers for high oleics. Oils & Fats International, 34(7), 18-20.
12. Odian, G. (2004). Principles of Polymerization, 4th ed. New York: Wiley.
https://doi.org/10.1002/047147875X
13. Barison, A.; da Silva, C. W.; Campos, F. R.; Simonelli, F.; Lenz, C. A. & Ferreira, A. G. (2010). A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy. Magn. Reson. Chem., 48, 571-659. doi: 10.1002/mrc.2629.
https://doi.org/10.1002/mrc.2629

Uncaught exception thrown in session handler.

PDOException: SQLSTATE[23000]: Integrity constraint violation: 1062 Duplicate entry &#039;0&#039; for key &#039;uid&#039;: INSERT INTO {sessions} (sid, ssid, uid, cache, hostname, session, timestamp) VALUES (:db_insert_placeholder_0, :db_insert_placeholder_1, :db_insert_placeholder_2, :db_insert_placeholder_3, :db_insert_placeholder_4, :db_insert_placeholder_5, :db_insert_placeholder_6); Array ( [:db_insert_placeholder_0] =&gt; J1lxumKONIiOVFjbiBYkkE83JxbYv4i9AuaqgT9wXhs [:db_insert_placeholder_1] =&gt; J1lxumKONIiOVFjbiBYkkE83JxbYv4i9AuaqgT9wXhs [:db_insert_placeholder_2] =&gt; 0 [:db_insert_placeholder_3] =&gt; 0 [:db_insert_placeholder_4] =&gt; 3.226.122.122 [:db_insert_placeholder_5] =&gt; nodeviewcount_views_limit|a:1:{i:24198;O:8:&quot;DateTime&quot;:3:{s:4:&quot;date&quot;;s:26:&quot;2023-03-28 05:04:55.000000&quot;;s:13:&quot;timezone_type&quot;;i:3;s:8:&quot;timezone&quot;;s:15:&quot;Europe/Helsinki&quot;;}} [:db_insert_placeholder_6] =&gt; 1679969094 ) in _drupal_session_write() (line 209 of /home/science/public_html/includes/session.inc).