The methods of obtaining structured and water-soluble nanocomposite films based on polyvinyl alcohol and intercalated montmorillonite are presented in the paper. The structure and thermophysical characteristics of the obtained films were investigated by differential scanning calorimetry. It was found that the modification of polyvinyl alcohol by intercalated montmorillonite reduces the degree of crystallinity of the obtained nanocomposites but significantly increases their heat resistance. Structured films based on polyvinyl alcohol have a homogeneous crosslinked structure.
1. Qu L. J. (2010). Preparation and Properties of Polyvinyl Alcohol/Polyvinyl Pyrrolidone Blend Films. Applied Mechanics and Materials, 44-47, 2381-2384. doi:10.4028/www.scientific.net/amm.44-47.2381.
https://doi.org/10.4028/www.scientific.net/AMM.44-47.2381
2. Strawhecker K. E., Manias E. (2000). Structure and Properties of Poly(vinyl alcohol)/Na Montmorillonite Nanocomposites. Chemistry of Materials, 12(10), 2943-2949. doi:10.1021/cm000506g.
https://doi.org/10.1021/cm000506g
3. Strawhecker K. E., & Manias E. (2001). AFM of Poly(vinyl alcohol) Crystals Next to an Inorganic Surface. Macromolecules, 34(24), 8475-8482. doi:10.1021/ma0101862.
https://doi.org/10.1021/ma0101862
4. Aslam M., Kalyar M. A., Raza Z. A. (2018). Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering & Science, 58(12), 2119-2132. doi:10.1002/pen.24855.
https://doi.org/10.1002/pen.24855
5. Suzuki K., Mori T. (1990). Thermal and catalytic properties of alumina-pillared Montmorillonite prepared in the presence of polyvinyl alcohol. Applied Catalysis, 63(1), 181-189. doi:10.1016/s0166-9834(00)81714-5.
https://doi.org/10.1016/S0166-9834(00)81714-5
6. Părpăriţă E., Cheaburu C. N., Pațachia S. F., Vasile C. (2014). Polyvinyl alcohol/chitosan/montmorillonite nanocomposites preparation by freeze/thaw cycles and characterization. Acta Chemica Iasi, 22(2), 75-96. doi:10.2478/achi-2014-0008.
https://doi.org/10.2478/achi-2014-0008
7. Krasinskyi V., Suberlyak O., Viktoria A., Jachowicz T. (2017). Rheological Properties of Compositions Based on Modified Polyvinyl Alcohol. Advances in Science and Technology Research Journal, 11(3), 304-309. doi:10.12913/22998624/76584.
https://doi.org/10.12913/22998624/76584
8. Khamula N., Antoniuk V., Krasinskyi V., Suberlyak O., Dulebova L. (2017). Investigation of the impact of modified montmorillonite on the viscosity of the solutions of polyvinyl alcohol. 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP). doi:10.1109/nap.2017.8190268.
https://doi.org/10.1109/NAP.2017.8190268
9. Krasinskyi V., Suberlyak O., Dulebová Ľ, Antoniuk V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials, 756, 3-10. doi:10.4028/www.scientific.net/kem.756.3.
https://doi.org/10.4028/www.scientific.net/KEM.756.3
10. Krasinskyi V., Suberlyak O., Viktoria A., Jachowicz T. (2017). Rheological Properties of Compositions Based on Modified Polyvinyl Alcohol. Advances in Science and Technology Research Journal, 11(3), 304-309. doi:10.12913/22998624/76584.
https://doi.org/10.12913/22998624/76584
11. Suberlyak O., Grytsenko O., Kochubei V. (2015). The Role of FeSO4 in the Obtaining of Polyvinylpirrolidone Copolymers. Chemistry & Chemical Technology, 9(4), 429-434. doi:10.23939/chcht09.04.429.
https://doi.org/10.23939/chcht09.04.429
12. Cho J. D., Lyoo W. S., Chvalun S. N., Blackwell J. (1999). X-ray Analysis and Molecular Modeling of Poly(vinyl alcohol)s with Different Stereoregularities. Macromolecules, 32(19), 6236-6241. doi:10.1021/ma9908402.
https://doi.org/10.1021/ma9908402
13. Bee S., Liew S., Ang W., Sin L. T., Bee S., Rahmat A. R. (2017). Interactive effect of calcined eggshell and montmorillonite on the characteristics of polyvinyl alcohol blends. Journal of Vinyl and Additive Technology, 24(4), 324-338. doi:10.1002/vnl.21595.
https://doi.org/10.1002/vnl.21595